organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(2,4-dihy­dr­oxy-6-methyl­phen­yl)ethanone

aDepartment of Chemistry, and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
*Correspondence e-mail: palangpon.kon@mahidol.ac.th

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 9 July 2015; accepted 14 July 2015; online 29 July 2015)

The title compound, C9H10O3, is a bioactive secondary metabolite, isolated from the endophytic fungus Nodulisporium sp. The compound exhibits an intra­molecular O—H⋯O hydrogen bond between the phenolic H atom and the carbonyl O atom of the adjacent acetyl group. In the crystal, mol­ecules are linked by hydrogen bonds involving the 4-phenolic H atom and a symmetry-related carbonyl O atom of a neighboring mol­ecule, resulting in extended supra­molecular chains along the a-axis direction. Aromatic ππ stacking inter­actions between the nearly parallel benzene rings of adjacent chains [centroid–centroid distance = 3.7478 (8) Å] further stabilize the three-dimensional supra­molecular framework.

1. Related literature

For biological activities of aceto­phenone derivatives, see: Das & Khosla (2009[Das, A. & Khosla, C. (2009). Chem. Biol. 16, 1197-1207.]); Suzuki et al. (2006[Suzuki, M., Nakagawa-Goto, K., Nakamura, S., Tokuda, H., Morris-Natschke, S. L., Kozuka, M., Nishino, H. & Lee, K.-H. (2006). Pharm. Biol. 44, 178-182.]); Tabuchi et al. (2014[Tabuchi, H., Tajimi, A. & Ichihara, A. (2014). Biosci. Biotechnol. Biochem. 58, 1956-1959.]). For related structures, see: Azeezaa et al. (2009[Azeezaa, V., Usha, G., Bhaskaran, S., Anthonysamy, A. & Balasubramanian, S. (2009). Acta Cryst. E65, o2271.]); Chakkaravarthi et al. (2007[Chakkaravarthi, G., Anthonysamy, A., Balasubramanian, S. & Manivannan, V. (2007). Acta Cryst. E63, o4163.]); Hill et al. (2012[Hill, T. N., Kuo, C.-M. & Bezuidenhoudt, B. C. B. (2012). Acta Cryst. E68, o2863.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10O3

  • Mr = 166.17

  • Monoclinic, P 21 /c

  • a = 7.3570 (3) Å

  • b = 15.001 (1) Å

  • c = 7.3180 (5) Å

  • β = 91.017 (4)°

  • V = 807.50 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.25 × 0.25 × 0.25 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 3260 measured reflections

  • 1828 independent reflections

  • 1319 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.03

  • 1828 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O9 0.82 1.77 2.4991 (16) 147
O11—H11⋯O9i 0.82 1.97 2.7843 (16) 173
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound C9H10O3 (Fig. 1), 2,4-di­hydroxy-6-methyl­aceto­phenone [systematic name: 1-(2,4-di­hydroxy-6-methyl­phenyl) ethanone], was a penta­ketide secondary metabolite isolated from the culture media of the endophytic fungus Nodulisporium sp. Derivatives of this aceto­phenone have been demonstrated to possess inter­esting pharmacological activities, such as inhibition of lettuce seeds (Tabuchi et al., 2014), bacterial plasmid transfer inhibition (Das and Khosla, 2009) and anti­cancer activity (Suzuki et al., 2006). It is an important biosynthesis precursor for a large varieties of bioactive polyketides.

The geometric parameters of this compound (Fig. 2) are comparable with previously reported values of similar aceto­phenone compounds (Azeezaa et al., 2009; Chakkaravarthi et al., 2007a; Hill et al., 2012). The bond lengths of C7—C8 and C6—C12 (1.4970 (2) and 1.5050 (2) Å), longer than that of C1—C7 (1.4580 (2) Å), may be a result of a resonant effect between C7—O9 (1.2485 (18) Å) carbonyl group and the aromatic ring. The bond length of C2—O10 (1.3466 (18) Å) is shorter than C4—O11 (1.3573 (19) Å). This may be a result of O10 being involved in an intra­molecular hydrogen bond. The acetyl group is coplanar with the aromatic ring C2—C1—C7—O9 (dihedral angle of 7.2 (2) °). The torsion angles C7—C1—C6—C12 and C7—C1—C6—C5 [1.9 (2)° and -179.75 (13)°, respectively] indicate a planar conformation of the respective moieties. An intra­molecular hydrogen bond was observed between the 2-phenolic hydrogen to the carbonyl group, O10—H10···O9 (D—H···A= 2.4983 (16) Å and O—H···O = 145°) to hold a carbonyl functionality in the coplanar plane of the aromatic ring. Inter­molecular hydrogen bonds between the 4-hydroxyl group to the carbonyl oxygen O11—H11···O9 (D—H···A= 2.7862 (18) Å and O—H···O = 171°) link the molecules in to an extended polymeric structure (Fig. 1). The π···π stacking inter­molecular inter­actions between two aromatic rings (centriod C1—C6) with a distance of (3.7478 (8) Å) (Fig. 2), further stabilize the three-dimensional network.

Experimental top

The culture media of the endophytic fungus Nodolisporium sp. (10 L) were extracted with EtOAc (6 x 500 mL). After removal of the solvent under reduced pressure, the EtOAc extract (2.25 g) was subjected to column chromatography over silica gel eluting with EtOAc:hexane (30-100%), followed by MeOH:EtOAc (0-100%) to yield fractions 1-19. After combination and removal of the solvents, fraction 4 (162.9 mg) was further purified by Sephadex LH-20 (20% H2O-MeOH) to yield 2,4-di­hydroxy-6-methyl­aceto­phenone (133 mg). Single crystals were obtained by slow evaporation from EtOAc solution.

Refinement top

The methyl H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and each group was allowed to rotate freely about its C—C bond. All other hydrogen atoms were placed in idealized locations (C—H = 0.96–0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl C).

Related literature top

For biological activities of acetophenone derivatives, see: Das & Khosla (2009); Suzuki et al. (2006); Tabuchi et al. (2014). For related structures, see: Azeezaa et al. (2009); Chakkaravarthi et al. (2007); Hill et al. (2012).

Structure description top

The title compound C9H10O3 (Fig. 1), 2,4-di­hydroxy-6-methyl­aceto­phenone [systematic name: 1-(2,4-di­hydroxy-6-methyl­phenyl) ethanone], was a penta­ketide secondary metabolite isolated from the culture media of the endophytic fungus Nodulisporium sp. Derivatives of this aceto­phenone have been demonstrated to possess inter­esting pharmacological activities, such as inhibition of lettuce seeds (Tabuchi et al., 2014), bacterial plasmid transfer inhibition (Das and Khosla, 2009) and anti­cancer activity (Suzuki et al., 2006). It is an important biosynthesis precursor for a large varieties of bioactive polyketides.

The geometric parameters of this compound (Fig. 2) are comparable with previously reported values of similar aceto­phenone compounds (Azeezaa et al., 2009; Chakkaravarthi et al., 2007a; Hill et al., 2012). The bond lengths of C7—C8 and C6—C12 (1.4970 (2) and 1.5050 (2) Å), longer than that of C1—C7 (1.4580 (2) Å), may be a result of a resonant effect between C7—O9 (1.2485 (18) Å) carbonyl group and the aromatic ring. The bond length of C2—O10 (1.3466 (18) Å) is shorter than C4—O11 (1.3573 (19) Å). This may be a result of O10 being involved in an intra­molecular hydrogen bond. The acetyl group is coplanar with the aromatic ring C2—C1—C7—O9 (dihedral angle of 7.2 (2) °). The torsion angles C7—C1—C6—C12 and C7—C1—C6—C5 [1.9 (2)° and -179.75 (13)°, respectively] indicate a planar conformation of the respective moieties. An intra­molecular hydrogen bond was observed between the 2-phenolic hydrogen to the carbonyl group, O10—H10···O9 (D—H···A= 2.4983 (16) Å and O—H···O = 145°) to hold a carbonyl functionality in the coplanar plane of the aromatic ring. Inter­molecular hydrogen bonds between the 4-hydroxyl group to the carbonyl oxygen O11—H11···O9 (D—H···A= 2.7862 (18) Å and O—H···O = 171°) link the molecules in to an extended polymeric structure (Fig. 1). The π···π stacking inter­molecular inter­actions between two aromatic rings (centriod C1—C6) with a distance of (3.7478 (8) Å) (Fig. 2), further stabilize the three-dimensional network.

The culture media of the endophytic fungus Nodolisporium sp. (10 L) were extracted with EtOAc (6 x 500 mL). After removal of the solvent under reduced pressure, the EtOAc extract (2.25 g) was subjected to column chromatography over silica gel eluting with EtOAc:hexane (30-100%), followed by MeOH:EtOAc (0-100%) to yield fractions 1-19. After combination and removal of the solvents, fraction 4 (162.9 mg) was further purified by Sephadex LH-20 (20% H2O-MeOH) to yield 2,4-di­hydroxy-6-methyl­aceto­phenone (133 mg). Single crystals were obtained by slow evaporation from EtOAc solution.

For biological activities of acetophenone derivatives, see: Das & Khosla (2009); Suzuki et al. (2006); Tabuchi et al. (2014). For related structures, see: Azeezaa et al. (2009); Chakkaravarthi et al. (2007); Hill et al. (2012).

Refinement details top

The methyl H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and each group was allowed to rotate freely about its C—C bond. All other hydrogen atoms were placed in idealized locations (C—H = 0.96–0.98 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing diagram shows layers of molecules built up by bifurcated O—H···O hydrogen bonds and ππ intermolecular interactions between phenyl rings.
1-(2,4-Dihydroxy-6-methylphenyl)ethanone top
Crystal data top
C9H10O3F(000) = 352
Mr = 166.17Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3570 (3) ÅCell parameters from 1754 reflections
b = 15.001 (1) Åθ = 1.0–27.5°
c = 7.3180 (5) ŵ = 0.10 mm1
β = 91.017 (4)°T = 298 K
V = 807.50 (8) Å3Block, yellow
Z = 40.25 × 0.25 × 0.25 mm
Data collection top
Nonius KappaCCD
diffractometer
1319 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD scansh = 99
3260 measured reflectionsk = 1719
1828 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.1187P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1828 reflectionsΔρmax = 0.22 e Å3
114 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.06 (2)
Crystal data top
C9H10O3V = 807.50 (8) Å3
Mr = 166.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3570 (3) ŵ = 0.10 mm1
b = 15.001 (1) ÅT = 298 K
c = 7.3180 (5) Å0.25 × 0.25 × 0.25 mm
β = 91.017 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1319 reflections with I > 2σ(I)
3260 measured reflectionsRint = 0.028
1828 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
1828 reflectionsΔρmin = 0.17 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s(except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70787 (19)0.22482 (9)0.77437 (17)0.0385 (4)
C20.70538 (18)0.32006 (10)0.77086 (18)0.0407 (4)
C30.8510 (2)0.37042 (10)0.83381 (19)0.0436 (4)
H30.84410.43810.83260.052*
C41.00510 (19)0.32826 (10)0.89794 (19)0.0447 (4)
C51.0142 (2)0.23520 (10)0.9001 (2)0.0446 (4)
H51.13200.20210.94100.053*
C60.87053 (19)0.18331 (10)0.84171 (17)0.0416 (4)
C70.5457 (2)0.17763 (10)0.70990 (19)0.0456 (4)
C80.5184 (3)0.07921 (13)0.7285 (3)0.0776 (6)
H8A0.60440.04830.65440.116*
H8B0.39720.06400.68910.116*
H8C0.53600.06220.85410.116*
O90.41657 (15)0.21912 (7)0.63688 (18)0.0588 (4)
O100.55972 (15)0.36627 (7)0.70969 (17)0.0552 (4)
H100.48300.33160.66880.083*
O111.14661 (16)0.37918 (8)0.95736 (18)0.0631 (4)
H111.22560.34711.00260.095*
C120.9014 (3)0.08414 (11)0.8510 (2)0.0607 (5)
H12A0.81650.05800.93350.073*
H12B1.02310.07250.89400.073*
H12C0.88420.05880.73150.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (8)0.0373 (8)0.0373 (7)0.0021 (6)0.0033 (6)0.0009 (5)
C20.0384 (7)0.0409 (8)0.0426 (7)0.0061 (6)0.0036 (5)0.0034 (6)
C30.0438 (8)0.0373 (8)0.0496 (8)0.0011 (6)0.0048 (6)0.0029 (6)
C40.0404 (8)0.0485 (9)0.0449 (8)0.0015 (6)0.0053 (6)0.0013 (6)
C50.0402 (8)0.0481 (9)0.0452 (8)0.0092 (6)0.0059 (6)0.0017 (6)
C60.0464 (8)0.0393 (8)0.0390 (7)0.0068 (6)0.0027 (6)0.0024 (5)
C70.0462 (8)0.0469 (9)0.0436 (8)0.0020 (7)0.0047 (6)0.0001 (6)
C80.0771 (13)0.0495 (11)0.1050 (15)0.0156 (9)0.0344 (11)0.0089 (10)
O90.0443 (7)0.0558 (7)0.0756 (8)0.0015 (5)0.0172 (5)0.0004 (5)
O100.0447 (7)0.0420 (6)0.0782 (8)0.0077 (5)0.0177 (5)0.0043 (5)
O110.0475 (7)0.0556 (7)0.0853 (9)0.0071 (5)0.0213 (6)0.0027 (6)
C120.0671 (11)0.0429 (9)0.0717 (11)0.0126 (8)0.0123 (8)0.0029 (8)
Geometric parameters (Å, º) top
C1—C61.4288 (18)C6—C121.506 (2)
C1—C21.429 (2)C7—O91.2481 (18)
C1—C71.4585 (19)C7—C81.497 (2)
C2—O101.3462 (16)C8—H8A0.9600
C2—C31.3831 (19)C8—H8B0.9600
C3—C41.374 (2)C8—H8C0.9600
C3—H31.0170O10—H100.8200
C4—O111.3566 (18)O11—H110.8200
C4—C51.398 (2)C12—H12A0.9600
C5—C61.375 (2)C12—H12B0.9600
C5—H51.0380C12—H12C0.9600
C6—C1—C2116.89 (13)O9—C7—C1120.57 (14)
C6—C1—C7125.12 (13)O9—C7—C8115.38 (14)
C2—C1—C7117.99 (12)C1—C7—C8124.04 (14)
O10—C2—C3115.89 (13)C7—C8—H8A109.5
O10—C2—C1122.05 (13)C7—C8—H8B109.5
C3—C2—C1122.04 (12)H8A—C8—H8B109.5
C4—C3—C2119.47 (14)C7—C8—H8C109.5
C4—C3—H3120.3H8A—C8—H8C109.5
C2—C3—H3120.3H8B—C8—H8C109.5
O11—C4—C3118.31 (14)C2—O10—H10109.5
O11—C4—C5121.49 (13)C4—O11—H11109.5
C3—C4—C5120.19 (13)C6—C12—H12A109.5
C6—C5—C4121.71 (13)C6—C12—H12B109.5
C6—C5—H5116.9H12A—C12—H12B109.5
C4—C5—H5121.4C6—C12—H12C109.5
C5—C6—C1119.68 (13)H12A—C12—H12C109.5
C5—C6—C12115.52 (13)H12B—C12—H12C109.5
C1—C6—C12124.79 (14)
C6—C1—C2—O10179.79 (12)C4—C5—C6—C10.9 (2)
C7—C1—C2—O100.3 (2)C4—C5—C6—C12179.57 (14)
C6—C1—C2—C31.66 (19)C2—C1—C6—C50.41 (19)
C7—C1—C2—C3178.24 (13)C7—C1—C6—C5179.48 (13)
O10—C2—C3—C4179.77 (13)C2—C1—C6—C12178.14 (14)
C1—C2—C3—C41.6 (2)C7—C1—C6—C122.0 (2)
C2—C3—C4—O11179.41 (13)C6—C1—C7—O9172.96 (13)
C2—C3—C4—C50.2 (2)C2—C1—C7—O97.2 (2)
O11—C4—C5—C6179.36 (14)C6—C1—C7—C88.5 (2)
C3—C4—C5—C61.0 (2)C2—C1—C7—C8171.41 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O90.821.772.4991 (16)147
O11—H11···O9i0.821.972.7843 (16)173
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O90.821.772.4991 (16)147.0
O11—H11···O9i0.821.972.7843 (16)172.8
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge financial support from the Thailand Research Fund, the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative. This study was conducted in a facility supported by the Center of Excellence for Innovation in Chemistry (PERCH–CIC).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAzeezaa, V., Usha, G., Bhaskaran, S., Anthonysamy, A. & Balasubramanian, S. (2009). Acta Cryst. E65, o2271.  CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Anthonysamy, A., Balasubramanian, S. & Manivannan, V. (2007). Acta Cryst. E63, o4163.  CSD CrossRef IUCr Journals Google Scholar
First citationDas, A. & Khosla, C. (2009). Chem. Biol. 16, 1197–1207.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHill, T. N., Kuo, C.-M. & Bezuidenhoudt, B. C. B. (2012). Acta Cryst. E68, o2863.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, M., Nakagawa-Goto, K., Nakamura, S., Tokuda, H., Morris-Natschke, S. L., Kozuka, M., Nishino, H. & Lee, K.-H. (2006). Pharm. Biol. 44, 178–182.  CrossRef Google Scholar
First citationTabuchi, H., Tajimi, A. & Ichihara, A. (2014). Biosci. Biotechnol. Biochem. 58, 1956–1959.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds