research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Supramolecular synthons in hydrates and solvates of lamotrigine: a tool for cocrystal design

crossmark logo

aDepartment of Applied Chemistry, University of Zagreb Faculty of Textile Technology, Prilaz baruna Filipovića 28a, Zagreb, 10000, Croatia, bResearch and Development, PLIVA Croatia Ltd, Prilaz baruna Filipovića 29, Zagreb, 10000, Croatia, and cDepartment of General and Inorganic Chemistry, University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, Zagreb, 10000, Croatia
*Correspondence e-mail: gpavlovic@ttf.unizg.hr

Edited by A. Nangia, CSIR–National Chemical Laboratory, India (Received 14 December 2023; accepted 18 March 2024; online 10 May 2024)

The molecule of anti-epileptic drug lamotrigine [LAM; 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is capable of the formation of multicomponent solids. Such an enhanced tendency is related to the diverse functionalities of the LAM chemical groups able to form hydrogen bonds. Two robust synthons are recognized in the supramolecular structure of LAM itself formed via N—H⋯N hydrogen bond: homosynthon, so-called aminopyridine dimer or synthon 1 [R22(8)] and larger homosynthon 2 [R32(8)]. The synthetic procedures for a new hydrate and 11 solvates of LAM (in the series: with acetone, ethanol: two polymorphs: form I and form II, 2-propanol, n-butanol, tert-butanol, n-pentanol, benzonitrile, acetonitrile, DMSO and dioxane) were performed. The comparative solid state structural analysis of a new hydrate and 11 solvates of LAM has been undertaken in order to establish robustness of the supramolecular synthons 1 and 2 found in the crystal structure of LAM itself as well as LAM susceptibility to build methodical solid state supramolecular architecture in the given competitive surrounding of potential hydrogen bonds. The aminopyridine dimer homosynthon 1 [R22(8)] has been switched from para-para (P-P) topology to ortho-ortho (O-O) topology in all crystal structures, except in LAM:n-pentanol:water solvate where it remains P-P. Homosynthon 2 [R32(8)] of the LAM crystal structure imitates in the LAM solvates as a heterosynthon by replacing the triazine nitrogen proton acceptor atoms of LAM with the proton acceptors of solvates molecules.

1. Introduction

Understanding the synthon hierarchy and robustness of the systems susceptible to forming multicomponent solids presents a tool for supramolecular design of materials with desired properties (Almarsson et al., 2012[Almarsson, Ö., Peterson, M. L. & Zaworotko, M. J. (2012). Pharm. Patent Anal. 1, 313-327.]; Trask, 2007[Trask, A. V. (2007). Mol. Pharm. 4, 301-309.]). Solid state chemistry of multicomponent solids has been the focus of pharmaceutical chemistry and industry over the last several decades due to the appearances of various phenomena in such multicomponent solids such as polymorphism (Bernstein, 2007[Bernstein, J. (2007). Polymorphism in Molecular Crystals, International Union of Crystallography Monographs on Crystallography 14. Oxford University Press.]), hydrates (Morris, 1999[Morris, K. R. (1999). In Polymorphism in Pharmaceutical Solids, edited by H. G. Brittain, pp. 125-181. Marcel Dekker, Inc.]; Khankari & Grant, 1995[Khankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61-79.]), solvates (Griesser, 2006[Griesser, U. J. (2006). In Polymorphism: in the Pharmaceutical Industry, edited by R. Hilfiker, pp. 211-230. Wiley-VCH.]) or cocrystals, especially API (active pharmaceutical ingredient) cocrystals (Duggirala et al., 2016[Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. (2016). Chem. Commun. 52, 640-655.]). Recently, Bolla with coauthors (Bolla et al., 2022[Bolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514-11603.]) published one of the most comprehensive overviews of preparative techniques, design, methodology and crystal engineering of pharmaceutical cocrystals. Such multicomponent solid state forms can modify the physical and chemical properties of pharmaceuticals through the solid state phenomena of mutual molecular recognition and self-assembling via non-covalent interactions. Following the definition of cocrystals given by FDA from February 2018 [US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)] that cocrystals are associated by nonionic and noncovalent bonds/interactions with coformers, one can distinguish among various crystalline solid state forms such as solvates, cocrystals or salts or their subsets such as solvates of cocrystals, solvates of salts or solvates of cocrystals of salts. The classification of cocrystals distinguishes the subset of ionic cocrystals, which are formed from a salt and one or more salts or neutral molecular coformers, from that of molecular cocrystals composed of two or more neutral molecular compounds (Braga et al., 2010[Braga, D., Grepioni, F. & Maini, L. (2010). Chem. Commun. 46, 6232-6242.]; Haskins et al., 2022[Haskins, M. M., Lusi, M. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 3333-3342.]).

Anti-epileptic drug lamotrigine (LAM) [3,5-di­amino-6-(2,3-di­chloro­phenyl)-1,2,4-triazine] shows a tendency to form multicomponent solids such as salts, solvates, cocrystals or their subsets such as solvates or hydrates of LAM salts or LAM cocrystals (Sridhar & Ravikumar, 2011[Sridhar, B. & Ravikumar, K. (2011). J. Chem. Crystallogr. 41, 1289-1300.]; Chadha et al., 2011[Chadha, R., Saini, A., Arora, P., Jain, D. S., Dasgupta, A. & Guru Row, T. N. (2011). CrystEngComm, 13, 6271-6284.]). The study of multicomponent forms of LAM such as solvates presents a valuable foundation for the study and design of supramolecular synthons for LAM cocrystals from the crystal engineering perspective (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]; Aakeröy & Salmon, 2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]; Rodriguez-Hornedo et al., 2007[Rodriguez-Hornedo, N., Nehm, S. J. & Jayasankar, A. (2007). Cocrystals. In Design, Properties and Formation Mechanisms, Encyclopedia of Pharmaceutical Technology, edited by J. Swarbrick, 3rd ed., pp. 615-635. InformaHealth Care.]).

Analysis of the CSD (version 5.45; November 2023) for a structural fragment of the LAM molecule (with any bonds within both rings) identifies 99 entries of any kind of crystalline form of LAM, all with the single-crystal structure and with 3D coordinates deposited (no filters were applied: rerefined structures, new polymorphs, structures at different temperatures were included). The entries were classified manually into 71 salts and solvates of salts, 13 solvates and 15 cocrystals or their solvates (according to requirement that a coformer is in the solid state form at room temperature following the ΔpKa rule). A detailed list of all multicomponent LAM forms with refcodes is given in Table S1 in supporting information.

In this work, we were particularly focused towards the supramolecular architectures of the crystal structures of 11 solvates (two of them are new polymorphs of LAM ethanol solvate) and a new hydrate polymorph of LAM obtained by single-crystal X-ray diffraction (SCXRD).

The supramolecular architectures of presented LAM multicomponent forms are described based on graph-set analyses of synthons (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

Comparative structural analysis of previously reported crystal structures of the hydrate derivative and three solvates (two of which are mixtures: ethanol/water and n-butanol/water and the third is a 2-propanol derivative with LAM:solvent stoichiometry of 2:2) has been given.

The existence of several stable polymorphic forms contributes to the complexity of the supramolecular architectures of LAM multicomponent crystalline forms.

By applying classifications to crystal forms of active pharmaceutical ingredients, compound LAM tert-butanol solvate (1:2) can be regarded as a cocrystal due to the definition of cocrystals since tert-butanol as a coformer is in the solid state at 20°C.

The majority of chosen solvent molecules contain the oxygen atom functionality (hydrates, alcohols, DMSO, dioxane) acting as a potential proton donor or proton acceptor in the formation of hydrogen bonds, whereas solvates with benzo­nitrile and aceto­nitrile molecules involve the –C≡N functionality as the potential proton acceptor in the formation of hydrogen bonds (Fig. 1[link]). In attempts to synthesize cocrystals of LAM with selected coformers in appropriate solvents, we obtained LAM solvates instead of cocrystals [Fig. 1[link](a)]. Therefore, there is a lot of research to be done in the context of the prediction of the stability of certain crystalline forms of LAM under given preparative conditions.

[Figure 1]
Figure 1
Overview of syntheses of LAM solvates: (a) solvates prepared from the mixtures of LAM and potential coformer in solvent; (b) solvates prepared from the mixtures of LAM and solvents. For details of synthetic conditions see Section 1 of supporting information.

2. Materials and methods

2.1. Materials

LAM was supplied from in house (PLIVA, Croatia) with purity of 99.9%. Suppliers of solvents and additional substances are listed in supporting information.

2.2. Synthesis of the LAM hydrates and solvates

General observations. Coformer selection methods in the preparation of LAM cocrystals included synthon probability statistics based on analysis of data in the Cambridge Structural Database (CSD; version 5.45, November 2023). In this work, preparation of 12 LAM multicomponent compounds containing molecules of solvents of crystallization is described. Several solvates of LAM crystallized from the mixtures of LAM and potential coformer in chosen solvent as a result of competitiveness between solvent and coformer molecules for more robust synthon formation with the LAM molecule under given preparative conditions. LAM solvates with ethanol, acetone, water, 2-propanol and aceto­nitrile were isolated in the crystalline form during attempts to synthesize cocrystals of LAM with glycine, EDTA, phthalimide or vanillin (Fig. 1[link]), and do not necessarily represent the most stable form that can be formed in such systems, which are highly dependent on crystallization conditions.

Other LAM solvates were isolated from the mixtures of LAM with dried ethanol, n-butanol, tert-butanol, n-pentanol, benzo­nitrile, DMSO and dioxane.

Experiments describing procedures for the preparation of single crystals suitable for SCXRD are given in supporting information.

2.3. Single-crystal X-ray diffraction

Single-crystal analyses of all compounds were performed on an Oxford Xcalibur Gemini diffractometer equipped with a Sapphire CCD detector and graphite–monochromated Cu Kα radiation, λ = 1.5418 Å [except for LAM hydrate (1:1): Mo Kα radiation, λ = 0.71073 Å] at 296 (2) K. All diffraction frames were collected using ω scans. General and crystal data for all compounds are listed in Tables S2–S4 in supporting information. CrysAlis CCD and CrysAlis RED (Agilent, 2010[Agilent (2010). CrysAlisPro, CrysAlis CCD and CrysAlis RED. Agilent Technologies (now Rigaku Oxford Diffraction), Yarnton, England.]) programs were employed for data collection, cell refinement and data reduction (CrysAlisPro; Agilent, 2010[Agilent (2010). CrysAlisPro, CrysAlis CCD and CrysAlis RED. Agilent Technologies (now Rigaku Oxford Diffraction), Yarnton, England.]). The Lorentz–polarization effect was corrected and the diffraction data have been scaled for absorption effects by the multi-scanning method. The structures were solved by direct methods and refined on F2 using the weighted full-matrix least-squares method. SHELXS97 (Sheldrick, 2015a[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), integrated in the WinGX (v. 1.80.05; Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) software package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to Csp2 and Csp3 carbon atoms were placed in geometrically idealized positions with isotropic displacement parameters fixed at 1.2Ueq [for Csp2 carbon atoms] or 1.5Ueq (for methyl groups) of the atoms to which they were attached and they were constrained to ride on their parent atoms. Hydrogen atoms of the LAM amino groups (bonded to N3 and N5 atoms) as well as the hydroxyl alcohol hydrogen atoms were located in difference Fourier maps as small electron densities at the final stages of the refinement procedures. These H-atom coordinates were refined with isotropic displacement parameters set at 1.2Ueq of the corresponding nitro­gen or oxygen atoms restraining N—H and O—H distances to 0.86 (2) and 0.82 (2) Å, respectively. In the structure of LAM 2-propanol solvate (1:2), one of the 2-propanol molecules exhibits positional disorder of terminal methyl groups (52:48) with sp3sp3 distances restrained by the DFIX instruction to 1.51 (1) Å.

Photographs in Fig. S1 show the crystal morphology of the single crystals used for the X-ray diffraction experiment.

The geometries of hydrogen bonds and contacts for all compounds are given in Tables S5–S16.

Molecular geometry calculations (including hydrogen-bonding and non-covalent interactions) were performed using programs PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.], 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659-659.]) integrated in the WinGX software system. Molecular visualization with ORTEP drawings and packing diagrams were generated using Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) software.

3. Results and discussion

Molecular structures of LAM hydrate and solvates are shown in Fig. 2[link].

[Figure 2]
Figure 2
Mercury-rendered ORTEP drawings of asymmetric units of the molecular structures of LAM solvates reported in this work. Atom-numbering schemes are shown for: (a) LAM hydrate (1:1), (b) LAM acetone solvate (1:1), (c) LAM ethanol solvate (1:1) (form I), (d) LAM ethanol solvate (1:1) (form II) (major component denoted as A of EtOH disordered molecule is shown), (e) LAM 2-propanol solvate (1:2) (only major component denoted as A of one 2-PrOH molecule is shown), (f) LAM tert-butanol solvate (1:2) (two tert-butanol molecules are denoted as A and B), (g) LAM n-butanol solvate (2:2) (A and B molecules are denoted), (h) LAM n-pentanol solvate hydrate (1:1:1) (major component A of n-pentanol disordered molecule is shown), (i) LAM benzonitrile solvate (1:2), (j) LAM aceto­nitrile solvate (1:1), (k) LAM DMSO solvate (1:1) (major component A of disordered DMSO molecule is shown), (l) LAM dioxane solvate (1:1.5). Displacement ellipsoids are drawn at the 50% probability level at 296 (2) K.

A detailed comparative analysis of supramolecular synthons and their relevant geometrical properties in the crystal structures of LAM hydrate and solvates along with the three other solvates (with their CSD refcodes) (Table 1[link]) is given below.

Table 1
Comparative analysis of supramolecular synthons in LAM hydrate and solvates

Crystal and molecular structures of hydrate (No. 1) and solvates (Nos. 3–5, 7, 9, 11–16) are reported in this work and structures 2, 6, 8 and 10 are identified by their CSD refcode.

No. LAM hydrate/solvate [with LAM/solvate (or hydrate) stoichiometry] Presence of synthon 1 Presence of synthon 2 Supramolecular assembling of synthons (described in Fig. 6[link]) Geometry of R24(16) synthon (synthon 2 – synthon 1 – synthon 2 array) General supramolecular assembling of R24(16) synthon with others
1 Water (1:1) Yes Yes Discrete dimer Planar Extended planar ribbons of synthons R24(16) and R44(10) alternate in the AB fashion
2 Water (1:1) (XUVLOP; Kubicki & Codding, 2001[Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 570, 53-60.]) No No Not formed Not formed because synthons 1 and 2 are not present
3 Acetone (1:1) Yes Yes Extended chains Planar Extended planar ribbons of synthons R24(16) and R22(8) alternate in the AB fashion
4 Ethanol (form I) (1:1) Yes Yes Discrete dimer Planar R24(16) synthon linked into ribbon motifs via hydrogen bonds
5 Ethanol (form II) (1:1) Yes Yes Extended chains (zigzag) Planar Zigzag ribbons of synthons R24(16) and R22(8) alternate in the AB fashion
6 Ethanol/water (1:1:1) (WUVLOP; Cheney et al., 2010[Cheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394-405.]) Yes Yes (via H2O) Discrete dimer Planar 3D array of hydrogen bonds
7 2-Propanol (1:2) Yes Yes Extended chains Planar Extended planar ribbons of synthons R24(16) and R22(8) alternate in the AB fashion
8 2-Propanol (2:2) (IJAHOR; Qian et al., 2009[Qian, Y., Lv, P.-C., Shi, L., Fang, R.-Q., Song, Z.-C. & Zhu, H.-L. (2009). J. Chem. Sci. 121, 463-470.]) Yes Yes Extended chains (zigzag) Planar Extended non-planar ribbon of alternating R24(16) and R22(8) synthons
9 n-Butanol (2:2) Yes Yes (not centrosymmetric) Extended chains Not formed Extended ribbons of synthons 1 and 2 with another R22(8) synthon
10 n-Butanol/water (1:1:1) (OVUNAV; Sridhar & Ravikumar, 2011[Sridhar, B. & Ravikumar, K. (2011). J. Chem. Crystallogr. 41, 1289-1300.]) Yes Yes (via H2O) Discrete dimer Planar Coplanar dimers layered structure
11 tert-Butanol (1:2) Yes Yes Extended chains Not planar Extended planar ribbons of synthons R24(16) and R22(8) alternate in the AB fashion
12 n-Pentanol/water (1:1:1) Yes Yes (via H2O) Extended chains Planar 3D hydrogen-bonded network
13 Benzo­nitrile (1:2) Yes Yes (via N atom of benzonitrile) Extended chains Planar Extended ribbons of alternating R24(16) and R22(8) synthons
14 Aceto­nitrile (1:1) Yes Yes (via N atom of aceto­nitrile) Extended chains Aceto­nitrile N atom slightly outside of the synthon 1 plane Extended non-planar ribbon of alternating R24(16) and R22(8) synthons
15 DMSO (1:1) Yes Yes Extended chains Planar Extended non-planar ribbon of alternating R24(16) and R22(8) synthons
16 Dioxane (1:1.5) Yes Yes Extended chains Planar Extended non-planar ribbon of alternating R24(16) and R22(8) synthons
†LAM synthons 1 and 2 are formed via N5—H2N5⋯N4 [amino-pyridine synthon 1 or so-called synthon A (Figs. 3[link] and 6[link])] and two hydrogen bonds: N3—H1N3⋯N6 and N5—H1N5⋯N6 (LAM synthon 2, Figs. 3[link] and 6[link]). The centrosymmetric synthon, which does not participate in R24(16) synthon formation, is of the same topology as synthon 1 (Figs. 3[link] and 6[link]), but formed via a different hydrogen bond and it is denoted in this work as synthon B (see Section 3.1.3[link]).

3.1. Analysis of supramolecular synthons

Two supramolecular synthons are present in the crystal structure of LAM [Figs. 3[link](b) and 4[link]]: synthon 1 [R22(8)] the so-called amino­pyridine centrosymmetrical dimer [involving atoms N3 and N4; para-para (P-P) dimer] and synthon 2 [R23(8)] [involving atoms N2, N3 and N5; see Fig. 3[link](b)]. Synthons 1 and 2 are fused via a N3—H5⋯N4 hydrogen bond which acts as a coupling.

[Figure 3]
Figure 3
(a) Structural diagram of the LAM molecule with the atom-numbering scheme. (b) Supramolecular synthons 1 and 2 in the crystal structure of the LAM molecule (CSD refcode: EFEMUX01; usually known as motifs 1 and 2, respectively) defined via the N—H⋯N type of hydrogen bond between the N4 atom of 1,2,4-triazine and the amino N3 atom (synthon 1: P-P dimerization) and between the N2 atom of 1,2,4-triazine and the amino N3 and N5 atoms (synthon 2).
[Figure 4]
Figure 4
Mercury-rendered crystal structures of LAM solvate compounds reported in this work: (a) LAM hydrate (1:1), (b) LAM acetone solvate (1:1), (c) LAM ethanol solvate (1:1) form I, (d) LAM ethanol solvate (1:1) form II, (e) LAM 2-propanol solvate (1:2), (f) LAM n-butanol solvate (2:2), (g) LAM tert-butanol solvate (1:2), (h) LAM n-pentanol solvate hydrate (1:1:1), (i) LAM benzo­nitrile solvate (1:2), (j) LAM aceto­nitrile solvate (1:1), (k) LAM DMSO solvate (1:1), (l) LAM dioxane solvate (1:1.5). For description of each crystal structure, see supporting information.

Both synthons 1 and 2 form building units in the form synthon 2–synthon 1–synthon 2 which are recognized as the more complex supramolecular synthon defined as R24(16). Synthon R24(16) is a robust building block in the crystal engineering of LAM multicomponent solids.

On the basis of the synthon probability statistics, it is well known that the various solvent molecules in the crystal structures of LAM multicomponent solids can participate in the formation of synthon 2 by replacing the N—H⋯N hydrogen bond formed between the amino group and the triazine nitro­gen atom of the LAM molecule with N—H⋯O or N—H⋯N hydrogen bonds formed with proton acceptors of the solvent molecules (Figs. 3[link] and 4[link]).

The investigation is also interesting from the polymorphism (and pseudopolymorphism) viewpoint since some compounds we report here are polymorphs of those previously published (such as the hydrate derivative) (Fig. 1[link]). We also found two new polymorphic forms of the LAM ethanol (1:1) derivative (assigned by us in this work as forms I and II). So far, the crystal structures of two polymorphic forms discovered at 100 (2) K (Hall et al., 2018[Hall, C. L., Potticary, J., Sparkes, H. A., Pridmore, N. E. & Hall, S. R. (2018). Acta Cryst. E74, 678-681.]) and 293 (2) K (Évora et al., 2019[Évora, A. O. L., Castro, R. A. E., Maria, T. M. R., Ramos Silva, M., Canotilho, J. & Eusébio, E. S. (2019). Eur. J. Pharm. Sci. 129, 148-162.]) have been published. All four molecular structures exhibit differences in the LAM molecule conformation defining these forms as conformational polymorphs.

Table 2[link] and Fig. 5[link] present the conformational polymorphism of LAM ethanol (1:1) solvates described so far in the literature with polymorphic forms of LAM ethanol (1:1) solvates discovered by us [see Table 1[link]: forms I and II, Figs. 2[link](c) and 2[link](d)]. The structures assigned CCDC numbers 1483194 and 1826282 are the same compound but determined at 296 K and 100 K, respectively.

Table 2
Conformational polymorphs of LAM ethanol solvates

CCDC number Data collection temperature (K) Space group and unit-cell parameters (Å, °) Torsion angle in the LAM molecule Topology of homosynthon 1 Reference
1826282 100 C2/c, a = 21.2458 (15), b = 10.2320 (8), c = 14.8428 (11), β = 118.808 (4) −117.6 (7) O-O (ortho-ortho) Hall et al. (2018[Hall, C. L., Potticary, J., Sparkes, H. A., Pridmore, N. E. & Hall, S. R. (2018). Acta Cryst. E74, 678-681.])
1483194 (form II) 296 C2/c, a = 21.268 (9), b = 10.450 (3), c = 19.085 (7), β = 136.662 (3) −117.4 (3) O-O This work
981033 293 C2/c, a = 21.300 (2), b = 10.471 (1), c = 15.024 (1), β = 119.19 117.9 (2) O-O Évora et al. (2019[Évora, A. O. L., Castro, R. A. E., Maria, T. M. R., Ramos Silva, M., Canotilho, J. & Eusébio, E. S. (2019). Eur. J. Pharm. Sci. 129, 148-162.])
1483195 (form I) 296 P21/n, a = 7.6894 (3), b = 11.3816 (4) c = 15.9147 (5), β = 92.710 (3) 92.9 (2) O-O This work
†Describes the spatial orientation around the C—C single bond that connects the 2,3-di­chloro­phenyl and 1,2,4-triazine rings of the LAM molecule.
[Figure 5]
Figure 5
Mercury-rendered overlay diagrams exhibiting conformational polymorphism of LAM ethanol (1:1) solvates (see Table 2[link]). (a) Overlay diagram of the same SCXRD molecular structure at room temperature (CCDC number 1483194 – yellow) and at 100 K (CCDC number 1826282 – red). (b) Overlay diagram of molecular structures with CCDC numbers 981033 (blue), 148195 (green) and 1826282 (red) exhibiting different spatial orientation of 1,2,4-triazine rings of LAM molecules in three structures [see Figs. 4[link](c) and 4[link](d)]; for crystal packing differences in forms I and II, see Section 3.1.3[link]. The overlays have been quantified via RMSD determination.
3.1.1. Robustness of LAM amino­pyridine synthon 1 in LAM solvates: P-P versus O-O topology

Aminopyridine synthon 1 interconnecting LAM molecules was found to be present in all analyzed structures converting from P-P topology to O-O topology in all crystal structures, except in LAM n-pentanol hydrate where it was preserved as the P-P dimer [Fig. 4[link](h)]. One polymorphic form of hydrate derivative (CSD refcode XUVLOP; Kubicki & Codding, 2001[Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 570, 53-60.]) (Table 1[link]) did not retain synthon 1 due to the water molecules participating in the hydrogen bonding between two LAM molecules which disabled the formation of synthon 1, probably due to the size of water molecule along with its potential to form hydrogen bonds. On the other hand, in this work, we report the crystal structure of LAM hydrate, the polymorphic form of the XUVLOP structure, where aminopyridine synthon 1 is preserved. Polymorphic LAM hydrate described here was obtained as a coexisting polymorph in an attempt to synthesize the LAM cocrystal with glycine in boiling water (see Section 1 in supporting information). Moreover, we noticed a crystal mixture of transparent and opaque crystals, the latter being a new polymorphic form, and transparent crystals which are confirmed to be a previously published structure (CSD refcode XUVLOP; Kubicki & Codding, 2001[Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 570, 53-60.]).

3.1.2. Emulation of LAM synthon 2

The functionalities introduced by selected solvent molecules are capable of imitating synthon 2 [R23(8)] found in the crystal structure of the LAM molecule itself (Fig. 3[link]) via the formation of N—H⋯O or N—H⋯N hydrogen bonds in the case of solvents with oxygen-containing groups or solvents containing –C≡N functionality, respectively.

Structural analysis of LAM solvate structures with solvents in Table 1[link] reveals that synthon 2 is not formed only in the structure of the polymorph of LAM hydrate (refcode XUVLOP; Kubicki & Codding, 2001[Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 570, 53-60.]) (ordinal number 2, Table 1[link]).

The competition of solvent molecules to hook up to the LAM molecule by hydrogen bonds in the multicomponent LAM solvates containing a water molecule is particularly challenging from the supramolecular point of view [Fig. 4[link](a): LAM hydrate (1:1) and Fig. 4[link](h): LAM n-pentanol hydrate (1:1:1)].

It is established that emulation of the LAM synthon 2 always happens via the N—H⋯O type of hydrogen bond with the water molecule oxygen atom (ordinal numbers 6, 10 and 12 in Table 1[link]), probably due to the size and hydrogen bond capability of the water molecule.

Condensed synthon R24(16) was not found in the crystal structures of water (XUVLOP; Kubicki & Codding, 2001[Kubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 570, 53-60.]) and n-butanol LAM solvates [Nos. 2 and 9, respectively, Table 1[link]; Fig. 4[link](f): LAM n-butanol solvate (2:2)].

3.1.3. Supramolecular relationship of amino­pyridine synthon 1 [R22(8)] and topologically identical synthon B

The possible supramolecular arrangements of synthon 1 in the described structures are schematically shown in Fig. 6[link] showing the assembling of synthon 1 (here, in Fig. 6[link] assigned as synthon A also) into discrete dimers or into extended chains with the heterosynthon of the same topology R22(8) (synthon B) in the alternating AB manner. The extended chains are a more frequent synthon. From Table 1[link] it can be seen that discrete dimers are found in four structures: hydrate derivative, polymorph I of ethanol derivative, ethanol/water (WUVLOP; Cheney et al., 2010[Cheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394-405.]) and n-butanol/water (OVUNAV; Sridhar & Ravikumar, 2011[Sridhar, B. & Ravikumar, K. (2011). J. Chem. Crystallogr. 41, 1289-1300.]) derivatives. In other crystal structures extended chains are present (Table 1[link]).

[Figure 6]
Figure 6
Possible supramolecular assembling of synthon 1 in the crystal structures of hydrate and solvates with the LAM molecule. Assembling of synthon 1 (`aminopyridine' synthon) into discrete dimers is more rare than assembling into extended zigzag chains alternating with the synthon denoted as B of the same graph-set designation, but of different topology (see Fig. 4[link] and Table 1[link] for the frequency of appearance in solvates and hydrates of LAM and crystal structure descriptions in supporting information).

Extended planar ribbons of synthons R24(16) (built up of synthons 1 and 2) and synthon B [of R22(8) graph-set designation], alternating in the AB fashion, are the most frequent supramolecular architecture of the structures analyzed in this work (Fig. 6[link]; see also crystal structure descriptions in supporting information and Fig. 4[link]).

The additional hydrogen bonds are formed with the solvent molecules with the multifunctional donor–acceptor hydrogen bonds capabilities resulting in the additional supramolecular assembling of molecules. This is particularly emphasized for small solvent molecules such as water or simpler alcohols.

4. Conclusion

In this article an example of a crystal engineering approach as a potential tool for the design of multicomponent solids of LAM [drug lamotrigine: 3,5-di­amino-6-(2,3-di­chloro­phenyl)-1,2,4-triazine], such as cocrystals, is given. The idea was to describe how the understanding of supramolecular arrangement in the crystal structures of hydrates and solvates can be applied to supramolecular cocrystal design in such a way that the crystal supramolecular topology of the hydrates and solvates is maintained in the crystal structures of cocrystals. If it is established that supramolecular synthons in LAM solvates are robust, this will possibly prevent complete supramolecular synthon rearrangement in LAM cocrystals. In this way, LAM solvates can be used as a design tool for LAM cocrystals.

LAM is an excellent tool that gives deep insight into possible supramolecular arrangements of a model molecule in various supramolecular environments in the crystalline state exhibiting hierarchy of molecular recognition. We previously successfully applied this approach in the preparation of LAM cocrystals (Lekšić et al., 2010[Lekšić, E., Pavlović, G. & Meštrović, E. (2010). Cryst. Growth Des. 12, 1847-1858.]; Lekšić, 2013[Lekšić, E. (2013). PhD thesis. University of Zagreb, Croatia.]).

Supramolecular analysis of a new hydrate and 11 new solvates [with acetone, ethanol with two polymorphs (form I and form II), 2-propanol, n-butanol, tert-butanol, n-pentanol, benzo­nitrile, aceto­nitrile, DMSO and dioxane] of LAM resulted in the observation of robustness of three synthons in the supramolecularly competitive surroundings: synthon 1 of R22(8) topology, synthon 2 of R23(8) topology and their combination, supramolecular synthon R24(16). LAM synthon 1 persists in all solvates except in the hydrate, while synthon 2 of R23(8) topology is a place for the mutual molecular recognition of LAM with the functional groups of solvent molecules in order to maintain synthon 2 topology.

It is shown that the formation of LAM solvates is highly dependent on crystallization conditions, size of the solvent molecule and its ability to form hydrogen bonds.

Since the LAM molecule itself has a great abundance of hydrogen-bond donors/acceptors as well as molecules of various solvents along with the phenomenon of polymorphism, there is a need for further development and investigations of the crystalline multicomponent forms of the LAM molecule as a fast growing field, particularly from the pharmaceutical point of view.

Supporting information


Computing details top

(LAM_hydrate) top
Crystal data top
C9H7Cl2N5·H2OF(000) = 560
Mr = 274.11Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3283 (3) ÅCell parameters from 4207 reflections
b = 9.8379 (3) Åθ = 3.5–31.9°
c = 12.9148 (3) ŵ = 0.55 mm1
β = 101.405 (3)°T = 296 K
V = 1161.80 (6) Å3Prism, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Oxford Xcalibur Gemini Sapphire CCD detector
diffractometer
1835 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.031
ω–scansθmax = 27.0°, θmin = 3.6°
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.18. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1011
Tmin = 0.479, Tmax = 1.000k = 1212
7485 measured reflectionsl = 1615
2501 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2501 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.02473 (6)0.45682 (6)0.37439 (4)0.05256 (19)
Cl21.03429 (7)0.54000 (6)0.14203 (4)0.0558 (2)
O10.9575 (2)0.06140 (17)0.66411 (12)0.0569 (4)
H1OA1.015 (2)0.088 (3)0.6290 (17)0.068*
H1OB0.920 (3)0.0056 (18)0.6323 (19)0.068*
N10.83512 (18)0.19940 (17)0.45980 (11)0.0411 (4)
N20.81946 (18)0.18129 (17)0.56081 (11)0.0428 (4)
N30.7199 (2)0.25217 (19)0.69970 (12)0.0487 (5)
H1N30.665 (2)0.307 (2)0.7277 (16)0.058*
H2N30.773 (2)0.1915 (18)0.7362 (16)0.058*
N40.64316 (19)0.36016 (16)0.54106 (11)0.0419 (4)
N50.5724 (3)0.4634 (2)0.38009 (14)0.0651 (6)
H1N50.577 (3)0.476 (3)0.3146 (9)0.078*
H2N50.508 (3)0.509 (3)0.409 (2)0.078*
C10.7821 (2)0.31367 (19)0.29063 (13)0.0366 (4)
C20.8948 (2)0.39478 (19)0.27027 (13)0.0376 (4)
C30.9034 (2)0.4275 (2)0.16769 (14)0.0420 (5)
C40.8039 (2)0.3733 (2)0.08390 (14)0.0491 (5)
H40.81080.39400.01480.059*
C50.6951 (2)0.2890 (2)0.10333 (15)0.0518 (5)
H50.62990.25010.04730.062*
C60.6825 (2)0.2617 (2)0.20610 (14)0.0447 (5)
H60.60590.20770.21860.054*
C70.7601 (2)0.29209 (19)0.40100 (13)0.0357 (4)
C80.7276 (2)0.26514 (18)0.59686 (13)0.0375 (4)
C90.6563 (2)0.37407 (19)0.44044 (13)0.0403 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0616 (4)0.0609 (4)0.0338 (3)0.0132 (3)0.0060 (2)0.0009 (2)
Cl20.0668 (4)0.0611 (4)0.0470 (3)0.0111 (3)0.0292 (3)0.0028 (2)
O10.0783 (12)0.0561 (10)0.0396 (8)0.0196 (8)0.0198 (7)0.0060 (6)
N10.0473 (10)0.0456 (9)0.0334 (7)0.0050 (8)0.0155 (7)0.0031 (7)
N20.0508 (10)0.0471 (10)0.0329 (7)0.0065 (8)0.0143 (7)0.0068 (7)
N30.0656 (12)0.0534 (12)0.0303 (8)0.0066 (9)0.0170 (8)0.0056 (7)
N40.0536 (10)0.0452 (10)0.0310 (7)0.0082 (8)0.0183 (7)0.0033 (6)
N50.0901 (16)0.0756 (15)0.0375 (9)0.0452 (12)0.0316 (10)0.0175 (9)
C10.0453 (10)0.0376 (10)0.0299 (8)0.0065 (8)0.0153 (7)0.0003 (7)
C20.0460 (11)0.0393 (10)0.0291 (8)0.0019 (9)0.0115 (7)0.0021 (7)
C30.0497 (12)0.0476 (11)0.0336 (9)0.0010 (9)0.0199 (8)0.0018 (8)
C40.0580 (13)0.0646 (14)0.0275 (8)0.0020 (11)0.0153 (8)0.0005 (8)
C50.0560 (13)0.0679 (14)0.0314 (9)0.0050 (11)0.0088 (8)0.0073 (9)
C60.0486 (12)0.0508 (12)0.0381 (10)0.0042 (9)0.0167 (8)0.0016 (8)
C70.0427 (10)0.0374 (10)0.0296 (8)0.0009 (8)0.0133 (7)0.0008 (7)
C80.0449 (11)0.0393 (10)0.0306 (8)0.0035 (8)0.0134 (7)0.0021 (7)
C90.0520 (12)0.0420 (11)0.0307 (8)0.0069 (9)0.0172 (8)0.0035 (7)
Geometric parameters (Å, º) top
Cl1—C21.7336 (18)N5—H1N50.862 (7)
Cl2—C31.728 (2)N5—H2N50.89 (3)
O1—H1OA0.813 (10)C1—C61.384 (3)
O1—H1OB0.816 (10)C1—C21.386 (3)
N1—C71.299 (2)C1—C71.495 (2)
N1—N21.3529 (19)C2—C31.381 (2)
N2—C81.337 (2)C3—C41.385 (3)
N3—C81.350 (2)C4—C51.371 (3)
N3—H1N30.868 (10)C4—H40.9300
N3—H2N30.855 (10)C5—C61.382 (3)
N4—C91.336 (2)C5—H50.9300
N4—C81.338 (2)C6—H60.9300
N5—C91.323 (3)C7—C91.429 (3)
H1OA—O1—H1OB104 (3)C5—C4—C3119.69 (17)
C7—N1—N2120.51 (15)C5—C4—H4120.2
C8—N2—N1116.95 (15)C3—C4—H4120.2
C8—N3—H1N3120.1 (16)C4—C5—C6119.99 (18)
C8—N3—H2N3118.0 (16)C4—C5—H5120.0
H1N3—N3—H2N3122 (2)C6—C5—H5120.0
C9—N4—C8115.98 (16)C5—C6—C1120.98 (19)
C9—N5—H1N5122.1 (19)C5—C6—H6119.5
C9—N5—H2N5117.2 (18)C1—C6—H6119.5
H1N5—N5—H2N5121 (2)N1—C7—C9120.83 (15)
C6—C1—C2118.62 (16)N1—C7—C1119.84 (16)
C6—C1—C7120.18 (17)C9—C7—C1119.33 (16)
C2—C1—C7120.99 (16)N2—C8—N4126.37 (15)
C3—C2—C1120.41 (17)N2—C8—N3116.53 (17)
C3—C2—Cl1119.87 (15)N4—C8—N3117.10 (17)
C1—C2—Cl1119.72 (13)N5—C9—N4118.94 (17)
C2—C3—C4120.19 (19)N5—C9—C7121.89 (16)
C2—C3—Cl2120.68 (15)N4—C9—C7119.18 (16)
C4—C3—Cl2119.10 (15)
C7—N1—N2—C81.9 (3)N2—N1—C7—C1178.12 (16)
C6—C1—C2—C32.7 (3)C6—C1—C7—N1101.7 (2)
C7—C1—C2—C3172.03 (17)C2—C1—C7—N183.6 (2)
C6—C1—C2—Cl1177.90 (15)C6—C1—C7—C978.3 (2)
C7—C1—C2—Cl17.3 (3)C2—C1—C7—C996.4 (2)
C1—C2—C3—C43.6 (3)N1—N2—C8—N44.2 (3)
Cl1—C2—C3—C4177.05 (16)N1—N2—C8—N3175.82 (17)
C1—C2—C3—Cl2174.49 (15)C9—N4—C8—N22.1 (3)
Cl1—C2—C3—Cl24.9 (2)C9—N4—C8—N3177.89 (18)
C2—C3—C4—C51.2 (3)C8—N4—C9—N5177.9 (2)
Cl2—C3—C4—C5176.91 (17)C8—N4—C9—C72.0 (3)
C3—C4—C5—C62.0 (3)N1—C7—C9—N5175.9 (2)
C4—C5—C6—C12.8 (3)C1—C7—C9—N54.0 (3)
C2—C1—C6—C50.5 (3)N1—C7—C9—N44.0 (3)
C7—C1—C6—C5175.26 (18)C1—C7—C9—N4176.03 (16)
N2—N1—C7—C91.9 (3)
(LAM_ethanol_form_I) top
Crystal data top
C9H7Cl2N5·C2H6OF(000) = 624
Mr = 302.16Dx = 1.443 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.6894 (3) ÅCell parameters from 4792 reflections
b = 11.3816 (4) Åθ = 3.9–72.6°
c = 15.9147 (5) ŵ = 4.21 mm1
β = 92.710 (3)°T = 296 K
V = 1391.26 (9) Å3Prism, colourless
Z = 40.50 × 0.50 × 0.30 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
2412 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.029
ω scansθmax = 70.0°, θmin = 4.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.36.21. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 99
Tmin = 0.550, Tmax = 1.000k = 139
12626 measured reflectionsl = 1919
2638 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.4355P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2638 reflectionsΔρmax = 0.27 e Å3
187 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03838 (6)0.50665 (5)0.17951 (3)0.05642 (17)
Cl20.25084 (8)0.57327 (5)0.05412 (3)0.0689 (2)
O10.4277 (2)0.61783 (16)0.35409 (11)0.0723 (5)
H1O10.445 (5)0.655 (3)0.3112 (14)0.109*
N10.0212 (2)0.23614 (14)0.29808 (10)0.0471 (4)
N20.1458 (2)0.20046 (14)0.34940 (11)0.0511 (4)
N30.2958 (3)0.23307 (17)0.46746 (12)0.0606 (5)
H1N30.313 (3)0.265 (2)0.5152 (10)0.073*
H2N30.345 (3)0.1683 (14)0.4540 (16)0.073*
N40.0815 (2)0.36565 (13)0.43869 (9)0.0437 (3)
N50.1310 (3)0.49581 (15)0.40440 (12)0.0587 (5)
H1N50.212 (3)0.516 (2)0.3722 (14)0.070*
H2N50.111 (3)0.532 (2)0.4502 (10)0.070*
C10.2039 (2)0.36481 (15)0.25463 (10)0.0399 (4)
C20.1673 (2)0.44488 (15)0.18999 (10)0.0404 (4)
C30.2957 (3)0.47549 (17)0.13589 (11)0.0474 (4)
C40.4606 (3)0.4290 (2)0.14575 (14)0.0614 (6)
H40.54610.45030.10920.074*
C50.4981 (3)0.3507 (2)0.21018 (15)0.0660 (6)
H50.60960.31950.21740.079*
C60.3709 (3)0.31832 (19)0.26401 (13)0.0547 (5)
H60.39720.26490.30700.066*
C70.0689 (2)0.33129 (14)0.31362 (10)0.0383 (4)
C80.1694 (2)0.26724 (15)0.41658 (11)0.0426 (4)
C90.0391 (2)0.39963 (15)0.38721 (10)0.0410 (4)
C100.5951 (4)0.5790 (3)0.3828 (2)0.0820 (8)
H10A0.65480.54600.33590.098*
H10B0.58280.51740.42420.098*
C110.6990 (4)0.6728 (4)0.4198 (3)0.1063 (11)
H11A0.81100.64280.43840.159*
H11B0.71350.73340.37870.159*
H11C0.64160.70480.46700.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0477 (3)0.0644 (3)0.0573 (3)0.0077 (2)0.0038 (2)0.0135 (2)
Cl20.0865 (4)0.0744 (4)0.0471 (3)0.0008 (3)0.0155 (3)0.0179 (2)
O10.0537 (8)0.0858 (11)0.0775 (11)0.0127 (8)0.0029 (8)0.0391 (9)
N10.0526 (9)0.0448 (8)0.0441 (8)0.0047 (7)0.0067 (7)0.0096 (6)
N20.0549 (9)0.0462 (8)0.0530 (9)0.0129 (7)0.0088 (7)0.0088 (7)
N30.0665 (11)0.0592 (10)0.0578 (10)0.0248 (9)0.0213 (9)0.0073 (8)
N40.0510 (8)0.0446 (8)0.0362 (7)0.0098 (6)0.0114 (6)0.0051 (6)
N50.0734 (12)0.0565 (10)0.0489 (9)0.0279 (8)0.0295 (8)0.0196 (7)
C10.0468 (9)0.0393 (8)0.0338 (8)0.0006 (7)0.0061 (7)0.0057 (6)
C20.0449 (9)0.0407 (8)0.0357 (8)0.0011 (7)0.0040 (7)0.0054 (7)
C30.0590 (11)0.0489 (10)0.0352 (9)0.0019 (8)0.0110 (8)0.0005 (7)
C40.0571 (12)0.0741 (14)0.0551 (12)0.0030 (10)0.0254 (10)0.0003 (10)
C50.0514 (11)0.0812 (15)0.0667 (13)0.0189 (11)0.0176 (10)0.0047 (12)
C60.0567 (11)0.0585 (11)0.0495 (10)0.0155 (9)0.0098 (9)0.0062 (9)
C70.0447 (9)0.0367 (8)0.0337 (8)0.0021 (6)0.0036 (6)0.0007 (6)
C80.0438 (9)0.0412 (9)0.0429 (9)0.0047 (7)0.0031 (7)0.0020 (7)
C90.0482 (9)0.0389 (8)0.0363 (8)0.0049 (7)0.0074 (7)0.0029 (7)
C100.0804 (17)0.0743 (16)0.0897 (19)0.0052 (13)0.0134 (14)0.0161 (14)
C110.0803 (19)0.118 (3)0.118 (3)0.0163 (18)0.0202 (19)0.018 (2)
Geometric parameters (Å, º) top
Cl1—C21.7318 (18)C1—C21.393 (2)
Cl2—C31.7345 (19)C1—C71.482 (2)
O1—C101.416 (3)C2—C31.385 (3)
O1—H1O10.820 (10)C3—C41.376 (3)
N1—C71.303 (2)C4—C51.379 (3)
N1—N21.351 (2)C4—H40.9300
N2—C81.331 (2)C5—C61.380 (3)
N3—C81.351 (2)C5—H50.9300
N3—H1N30.857 (10)C6—H60.9300
N3—H2N30.851 (10)C7—C91.433 (2)
N4—C91.324 (2)C10—C111.442 (5)
N4—C81.346 (2)C10—H10A0.9700
N5—C91.324 (2)C10—H10B0.9700
N5—H1N50.857 (10)C11—H11A0.9600
N5—H2N50.859 (10)C11—H11B0.9600
C1—C61.390 (3)C11—H11C0.9600
C10—O1—H1O1105 (3)C5—C6—C1120.65 (19)
C7—N1—N2121.41 (15)C5—C6—H6119.7
C8—N2—N1116.20 (15)C1—C6—H6119.7
C8—N3—H1N3123.6 (19)N1—C7—C9120.14 (16)
C8—N3—H2N3114.9 (18)N1—C7—C1118.41 (15)
H1N3—N3—H2N3120 (3)C9—C7—C1121.43 (15)
C9—N4—C8116.04 (15)N2—C8—N4126.82 (16)
C9—N5—H1N5119.7 (18)N2—C8—N3116.49 (16)
C9—N5—H2N5117.2 (18)N4—C8—N3116.69 (17)
H1N5—N5—H2N5123 (3)N4—C9—N5119.76 (16)
C6—C1—C2118.79 (16)N4—C9—C7119.38 (15)
C6—C1—C7120.34 (16)N5—C9—C7120.86 (16)
C2—C1—C7120.86 (15)O1—C10—C11112.2 (3)
C3—C2—C1119.92 (16)O1—C10—H10A109.2
C3—C2—Cl1120.84 (14)C11—C10—H10A109.2
C1—C2—Cl1119.24 (13)O1—C10—H10B109.2
C4—C3—C2120.83 (18)C11—C10—H10B109.2
C4—C3—Cl2118.79 (15)H10A—C10—H10B107.9
C2—C3—Cl2120.38 (15)C10—C11—H11A109.5
C3—C4—C5119.53 (19)C10—C11—H11B109.5
C3—C4—H4120.2H11A—C11—H11B109.5
C5—C4—H4120.2C10—C11—H11C109.5
C4—C5—C6120.3 (2)H11A—C11—H11C109.5
C4—C5—H5119.9H11B—C11—H11C109.5
C6—C5—H5119.9
C7—N1—N2—C80.6 (3)N2—N1—C7—C1179.81 (16)
C6—C1—C2—C30.9 (3)C6—C1—C7—N185.8 (2)
C7—C1—C2—C3179.62 (16)C2—C1—C7—N195.5 (2)
C6—C1—C2—Cl1178.15 (14)C6—C1—C7—C992.9 (2)
C7—C1—C2—Cl10.6 (2)C2—C1—C7—C985.8 (2)
C1—C2—C3—C40.9 (3)N1—N2—C8—N40.4 (3)
Cl1—C2—C3—C4178.08 (16)N1—N2—C8—N3178.98 (17)
C1—C2—C3—Cl2178.96 (13)C9—N4—C8—N20.9 (3)
Cl1—C2—C3—Cl22.0 (2)C9—N4—C8—N3178.48 (18)
C2—C3—C4—C50.2 (3)C8—N4—C9—N5179.81 (19)
Cl2—C3—C4—C5179.65 (19)C8—N4—C9—C70.4 (2)
C3—C4—C5—C60.5 (4)N1—C7—C9—N40.5 (3)
C4—C5—C6—C10.6 (4)C1—C7—C9—N4179.23 (16)
C2—C1—C6—C50.1 (3)N1—C7—C9—N5179.22 (19)
C7—C1—C6—C5178.9 (2)C1—C7—C9—N50.5 (3)
N2—N1—C7—C91.1 (3)
(LAM_ethanol_form_II) top
Crystal data top
C11H13Cl2N5OF(000) = 1248
Mr = 302.16Dx = 1.379 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.268 (9) ÅCell parameters from 1132 reflections
b = 10.450 (3) Åθ = 3.1–31.9°
c = 19.085 (7) ŵ = 0.45 mm1
β = 136.662 (3)°T = 296 K
V = 2911.1 (18) Å3Prism, colourless
Z = 80.50 × 0.50 × 0.30 mm
Data collection top
Oxford Xcalibur Gemini
diffractometer
θmax = 27.0°, θmin = 3.1°
9035 measured reflectionsh = 2724
3173 independent reflectionsk = 1213
1575 reflections with I > 2σ(I)l = 2424
Rint = 0.038
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.001
3173 reflectionsΔρmax = 0.35 e Å3
205 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.19605 (4)0.33114 (7)0.10695 (5)0.0775 (2)
Cl20.39425 (4)0.37241 (8)0.21226 (6)0.0925 (3)
O10.25203 (11)0.44687 (19)0.41223 (13)0.0734 (5)
H1O10.2301 (19)0.3801 (18)0.379 (2)0.110*
N10.16208 (11)0.23345 (18)0.27716 (12)0.0534 (5)
N20.08001 (11)0.22087 (19)0.24142 (13)0.0545 (5)
N30.06696 (12)0.1501 (2)0.11602 (14)0.0653 (6)
H1N30.1115 (12)0.114 (2)0.0586 (11)0.078*
H2N30.0748 (16)0.186 (2)0.1499 (16)0.078*
N40.02721 (10)0.09866 (17)0.10082 (12)0.0463 (4)
N50.12636 (11)0.0424 (2)0.09519 (14)0.0559 (5)
H1N50.1779 (9)0.046 (2)0.1167 (16)0.067*
H2N50.0828 (11)0.002 (2)0.0399 (11)0.067*
C10.27255 (12)0.2035 (2)0.27667 (15)0.0476 (5)
C20.28729 (13)0.2690 (2)0.22666 (15)0.0508 (6)
C30.37514 (14)0.2892 (2)0.27323 (18)0.0600 (6)
C40.44892 (15)0.2445 (3)0.3699 (2)0.0750 (8)
H40.50790.25730.40060.090*
C50.43613 (15)0.1815 (3)0.42078 (19)0.0779 (8)
H50.48640.15170.48660.093*
C60.34843 (14)0.1613 (2)0.37507 (16)0.0636 (7)
H60.34040.11890.41090.076*
C70.17874 (12)0.1820 (2)0.22937 (14)0.0447 (5)
C80.01549 (13)0.1563 (2)0.15342 (15)0.0489 (5)
C90.11068 (12)0.1063 (2)0.14076 (14)0.0428 (5)
C10A0.2115 (3)0.4730 (11)0.4462 (6)0.097 (2)0.57
H10A0.24720.53820.49880.116*0.57
H10B0.21360.39600.47620.116*0.57
C11A0.1162 (6)0.5163 (9)0.3632 (6)0.118 (3)0.57
H11A0.09210.53250.38960.177*0.57
H11B0.11390.59350.33410.177*0.57
H11C0.08030.45130.31150.177*0.57
C10B0.1869 (7)0.5266 (9)0.3920 (9)0.087 (3)0.43
H10C0.13730.54450.31940.104*0.43
H10D0.21520.60720.42790.104*0.43
C11B0.1506 (15)0.4635 (13)0.4253 (14)0.145 (5)0.43
H11D0.10620.51820.41140.217*0.43
H11E0.12200.38430.38910.217*0.43
H11F0.19970.44680.49730.217*0.43
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0594 (3)0.0873 (5)0.0701 (4)0.0030 (3)0.0421 (3)0.0179 (4)
Cl20.0866 (5)0.1127 (7)0.1106 (6)0.0347 (4)0.0822 (5)0.0216 (5)
O10.0617 (10)0.0862 (15)0.0832 (12)0.0223 (9)0.0563 (10)0.0299 (10)
N10.0523 (10)0.0630 (13)0.0542 (10)0.0137 (9)0.0418 (9)0.0149 (9)
N20.0522 (10)0.0705 (14)0.0545 (11)0.0145 (9)0.0432 (9)0.0183 (10)
N30.0468 (10)0.1005 (19)0.0593 (12)0.0120 (10)0.0420 (9)0.0224 (12)
N40.0436 (9)0.0574 (12)0.0466 (9)0.0083 (8)0.0356 (8)0.0105 (9)
N50.0449 (10)0.0726 (15)0.0594 (11)0.0161 (9)0.0410 (10)0.0257 (10)
C10.0419 (11)0.0500 (15)0.0471 (12)0.0075 (9)0.0312 (10)0.0100 (10)
C20.0429 (11)0.0522 (15)0.0558 (13)0.0093 (10)0.0354 (10)0.0103 (11)
C30.0528 (13)0.0655 (17)0.0683 (15)0.0139 (11)0.0461 (13)0.0166 (13)
C40.0439 (13)0.089 (2)0.0794 (19)0.0091 (13)0.0408 (14)0.0138 (16)
C50.0435 (13)0.087 (2)0.0544 (15)0.0023 (13)0.0198 (12)0.0049 (15)
C60.0519 (13)0.0722 (18)0.0493 (13)0.0069 (12)0.0312 (11)0.0049 (12)
C70.0431 (11)0.0517 (14)0.0439 (11)0.0056 (9)0.0331 (10)0.0056 (10)
C80.0509 (12)0.0550 (15)0.0513 (12)0.0053 (10)0.0405 (11)0.0050 (11)
C90.0423 (11)0.0486 (13)0.0429 (11)0.0052 (9)0.0328 (10)0.0047 (10)
C10A0.068 (4)0.151 (8)0.080 (4)0.008 (4)0.057 (4)0.025 (4)
C11A0.117 (6)0.098 (7)0.172 (8)0.015 (4)0.116 (6)0.002 (5)
C10B0.082 (6)0.087 (6)0.104 (7)0.012 (4)0.071 (5)0.025 (5)
C11B0.226 (14)0.109 (11)0.226 (15)0.078 (11)0.205 (14)0.081 (10)
Geometric parameters (Å, º) top
Cl1—C21.720 (2)C3—C41.368 (3)
Cl2—C31.721 (2)C4—C51.355 (4)
O1—C10B1.409 (9)C4—H40.9300
O1—C10A1.431 (7)C5—C61.385 (3)
O1—H1O10.819 (10)C5—H50.9300
N1—C71.310 (2)C6—H60.9300
N1—N21.341 (2)C7—C91.421 (3)
N2—C81.344 (3)C10A—C11A1.467 (7)
N3—C81.330 (3)C10A—H10A0.9700
N3—H1N30.857 (10)C10A—H10B0.9700
N3—H2N30.860 (10)C11A—H11A0.9600
N4—C91.331 (2)C11A—H11B0.9600
N4—C81.340 (2)C11A—H11C0.9600
N5—C91.317 (2)C10B—C11B1.466 (8)
N5—H1N50.847 (9)C10B—H10C0.9700
N5—H2N50.854 (9)C10B—H10D0.9700
C1—C21.383 (3)C11B—H11D0.9600
C1—C61.385 (3)C11B—H11E0.9600
C1—C71.492 (3)C11B—H11F0.9600
C2—C31.382 (3)
C10B—O1—H1O1113 (2)C9—C7—C1124.07 (18)
C10A—O1—H1O1108 (2)N3—C8—N4117.85 (19)
C7—N1—N2121.13 (17)N3—C8—N2116.38 (19)
N1—N2—C8116.94 (17)N4—C8—N2125.77 (18)
C8—N3—H1N3120.5 (16)N5—C9—N4117.67 (17)
C8—N3—H2N3118.4 (16)N5—C9—C7122.67 (17)
H1N3—N3—H2N3121 (2)N4—C9—C7119.66 (18)
C9—N4—C8116.19 (16)O1—C10A—C11A112.5 (9)
C9—N5—H1N5121.3 (15)O1—C10A—H10A109.1
C9—N5—H2N5119.9 (15)C11A—C10A—H10A109.1
H1N5—N5—H2N5119 (2)O1—C10A—H10B109.1
C2—C1—C6117.91 (19)C11A—C10A—H10B109.1
C2—C1—C7122.10 (18)H10A—C10A—H10B107.8
C6—C1—C7119.9 (2)C10A—C11A—H11A109.5
C3—C2—C1120.7 (2)C10A—C11A—H11B109.5
C3—C2—Cl1119.22 (18)H11A—C11A—H11B109.5
C1—C2—Cl1120.03 (15)C10A—C11A—H11C109.5
C4—C3—C2120.2 (2)H11A—C11A—H11C109.5
C4—C3—Cl2118.72 (18)H11B—C11A—H11C109.5
C2—C3—Cl2121.05 (19)O1—C10B—C11B109.8 (12)
C5—C4—C3120.1 (2)O1—C10B—H10C109.7
C5—C4—H4120.0C11B—C10B—H10C109.7
C3—C4—H4120.0O1—C10B—H10D109.7
C4—C5—C6120.2 (2)C11B—C10B—H10D109.7
C4—C5—H5119.9H10C—C10B—H10D108.2
C6—C5—H5119.9C10B—C11B—H11D109.5
C1—C6—C5120.9 (2)C10B—C11B—H11E109.5
C1—C6—H6119.6H11D—C11B—H11E109.5
C5—C6—H6119.6C10B—C11B—H11F109.5
N1—C7—C9119.97 (17)H11D—C11B—H11F109.5
N1—C7—C1115.89 (17)H11E—C11B—H11F109.5
C7—N1—N2—C81.7 (3)N2—N1—C7—C1179.70 (19)
C6—C1—C2—C31.2 (3)C2—C1—C7—N1118.0 (2)
C7—C1—C2—C3178.9 (2)C6—C1—C7—N159.7 (3)
C6—C1—C2—Cl1176.57 (17)C2—C1—C7—C964.9 (3)
C7—C1—C2—Cl11.2 (3)C6—C1—C7—C9117.4 (2)
C1—C2—C3—C40.1 (3)C9—N4—C8—N3179.7 (2)
Cl1—C2—C3—C4177.7 (2)C9—N4—C8—N20.5 (3)
C1—C2—C3—Cl2179.14 (17)N1—N2—C8—N3176.6 (2)
Cl1—C2—C3—Cl21.3 (3)N1—N2—C8—N43.2 (3)
C2—C3—C4—C50.8 (4)C8—N4—C9—N5174.9 (2)
Cl2—C3—C4—C5178.3 (2)C8—N4—C9—C75.3 (3)
C3—C4—C5—C60.4 (4)N1—C7—C9—N5173.4 (2)
C2—C1—C6—C51.5 (3)C1—C7—C9—N53.6 (3)
C7—C1—C6—C5179.3 (2)N1—C7—C9—N46.8 (3)
C4—C5—C6—C10.7 (4)C1—C7—C9—N4176.19 (19)
N2—N1—C7—C93.0 (3)
(LAM_acetone_solvate) top
Crystal data top
C9H7Cl2N5·C3H6OZ = 2
Mr = 314.17F(000) = 324
Triclinic, P1Dx = 1.356 Mg m3
a = 7.1227 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6434 (10) ÅCell parameters from 1624 reflections
c = 10.9101 (13) Åθ = 4.2–60.9°
α = 94.031 (9)°µ = 0.42 mm1
β = 100.823 (9)°T = 296 K
γ = 107.105 (8)°Stick, colourless
V = 769.47 (14) Å30.60 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
1721 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.029
ω scansθmax = 23.8°, θmin = 1.9°
Absorption correction: multi-scanh = 77
Tmin = 0.716, Tmax = 1.000k = 612
3812 measured reflectionsl = 1112
2283 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2283 reflectionsΔρmax = 0.21 e Å3
193 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85131 (10)0.18644 (9)0.90144 (7)0.0861 (3)
Cl21.26101 (13)0.21477 (11)1.08348 (8)0.1091 (4)
O10.0098 (3)0.0938 (2)0.6908 (2)0.0947 (7)
N10.8507 (3)0.42002 (19)0.63750 (19)0.0591 (5)
N20.6829 (3)0.42271 (19)0.5584 (2)0.0604 (6)
N30.3808 (3)0.3123 (2)0.4285 (2)0.0683 (6)
H1N30.277 (3)0.2430 (18)0.399 (3)0.082*
H2N30.364 (4)0.3888 (15)0.421 (3)0.082*
N40.5691 (3)0.18587 (18)0.51721 (18)0.0563 (5)
N50.7720 (4)0.0692 (2)0.5992 (2)0.0710 (7)
H1N50.884 (2)0.064 (3)0.640 (2)0.085*
H2N50.678 (3)0.0017 (18)0.561 (2)0.085*
C11.0724 (3)0.3169 (2)0.7464 (2)0.0511 (6)
C21.0759 (3)0.2648 (2)0.8603 (2)0.0558 (6)
C31.2562 (4)0.2790 (3)0.9427 (2)0.0641 (7)
C41.4353 (4)0.3467 (3)0.9136 (3)0.0732 (8)
H41.55660.35580.96870.088*
C51.4348 (4)0.4009 (3)0.8031 (3)0.0771 (8)
H51.55580.44750.78370.092*
C61.2550 (4)0.3861 (3)0.7207 (3)0.0657 (7)
H61.25640.42360.64620.079*
C70.8813 (3)0.3068 (2)0.6574 (2)0.0499 (6)
C80.5477 (4)0.3065 (2)0.5045 (2)0.0538 (6)
C90.7403 (3)0.1853 (2)0.5915 (2)0.0528 (6)
C100.1575 (4)0.1214 (3)0.7326 (3)0.0655 (7)
C110.3514 (5)0.0167 (3)0.7858 (4)0.1119 (13)
H11A0.45300.05690.81480.168*
H11B0.39020.03700.72210.168*
H11C0.33690.03780.85510.168*
C120.1536 (5)0.2606 (3)0.7360 (3)0.0906 (10)
H12A0.28590.26290.77270.136*
H12B0.06110.30240.78570.136*
H12C0.11130.30690.65190.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0561 (4)0.1130 (7)0.0789 (5)0.0085 (4)0.0108 (3)0.0352 (4)
Cl20.0927 (6)0.1551 (9)0.0780 (6)0.0438 (6)0.0038 (4)0.0464 (6)
O10.0683 (13)0.0759 (14)0.1295 (18)0.0265 (11)0.0135 (12)0.0235 (12)
N10.0577 (12)0.0458 (12)0.0673 (13)0.0152 (9)0.0005 (10)0.0079 (10)
N20.0569 (12)0.0445 (12)0.0712 (13)0.0162 (10)0.0076 (10)0.0075 (10)
N30.0669 (14)0.0488 (13)0.0784 (15)0.0221 (11)0.0158 (12)0.0059 (12)
N40.0599 (12)0.0429 (12)0.0583 (12)0.0183 (9)0.0083 (10)0.0045 (9)
N50.0670 (14)0.0463 (13)0.0867 (17)0.0225 (11)0.0188 (12)0.0002 (11)
C10.0486 (13)0.0436 (13)0.0566 (14)0.0137 (11)0.0031 (11)0.0031 (11)
C20.0479 (13)0.0536 (14)0.0617 (15)0.0146 (11)0.0054 (11)0.0052 (12)
C30.0582 (16)0.0732 (17)0.0585 (15)0.0260 (14)0.0012 (12)0.0070 (13)
C40.0491 (16)0.085 (2)0.0778 (19)0.0238 (14)0.0031 (13)0.0034 (16)
C50.0479 (15)0.089 (2)0.084 (2)0.0085 (14)0.0131 (14)0.0040 (17)
C60.0576 (16)0.0684 (17)0.0654 (16)0.0124 (13)0.0117 (13)0.0082 (13)
C70.0506 (13)0.0423 (13)0.0537 (13)0.0146 (10)0.0033 (10)0.0072 (10)
C80.0585 (14)0.0464 (14)0.0539 (14)0.0198 (11)0.0002 (11)0.0077 (11)
C90.0557 (14)0.0426 (14)0.0565 (14)0.0184 (11)0.0008 (11)0.0057 (11)
C100.0550 (15)0.0621 (17)0.0739 (17)0.0169 (13)0.0036 (13)0.0081 (14)
C110.067 (2)0.078 (2)0.166 (4)0.0043 (17)0.004 (2)0.008 (2)
C120.083 (2)0.070 (2)0.117 (3)0.0308 (17)0.0091 (19)0.0152 (18)
Geometric parameters (Å, º) top
Cl1—C21.730 (2)C2—C31.383 (3)
Cl2—C31.723 (3)C3—C41.375 (4)
O1—C101.193 (3)C4—C51.373 (4)
N1—C71.312 (3)C4—H40.9300
N1—N21.346 (3)C5—C61.379 (4)
N2—C81.337 (3)C5—H50.9300
N3—C81.336 (3)C6—H60.9300
N3—H1N30.865 (10)C7—C91.425 (3)
N3—H2N30.864 (10)C10—C121.476 (4)
N4—C91.333 (3)C10—C111.480 (4)
N4—C81.350 (3)C11—H11A0.9600
N5—C91.326 (3)C11—H11B0.9600
N5—H1N50.859 (10)C11—H11C0.9600
N5—H2N50.862 (10)C12—H12A0.9600
C1—C61.384 (3)C12—H12B0.9600
C1—C21.395 (3)C12—H12C0.9600
C1—C71.486 (3)
C7—N1—N2120.55 (19)C1—C6—H6119.3
C8—N2—N1117.65 (18)N1—C7—C9120.14 (19)
C8—N3—H1N3122.8 (19)N1—C7—C1115.5 (2)
C8—N3—H2N3118.8 (19)C9—C7—C1124.34 (19)
H1N3—N3—H2N3117 (3)N3—C8—N2116.3 (2)
C9—N4—C8115.83 (19)N3—C8—N4118.0 (2)
C9—N5—H1N5121 (2)N2—C8—N4125.7 (2)
C9—N5—H2N5119 (2)N5—C9—N4117.3 (2)
H1N5—N5—H2N5120 (3)N5—C9—C7122.8 (2)
C6—C1—C2117.7 (2)N4—C9—C7119.93 (19)
C6—C1—C7119.9 (2)O1—C10—C12121.6 (3)
C2—C1—C7122.3 (2)O1—C10—C11121.0 (3)
C3—C2—C1120.9 (2)C12—C10—C11117.4 (3)
C3—C2—Cl1119.6 (2)C10—C11—H11A109.5
C1—C2—Cl1119.45 (17)C10—C11—H11B109.5
C4—C3—C2120.0 (2)H11A—C11—H11B109.5
C4—C3—Cl2118.95 (19)C10—C11—H11C109.5
C2—C3—Cl2121.0 (2)H11A—C11—H11C109.5
C5—C4—C3119.9 (2)H11B—C11—H11C109.5
C5—C4—H4120.0C10—C12—H12A109.5
C3—C4—H4120.0C10—C12—H12B109.5
C4—C5—C6120.0 (3)H12A—C12—H12B109.5
C4—C5—H5120.0C10—C12—H12C109.5
C6—C5—H5120.0H12A—C12—H12C109.5
C5—C6—C1121.4 (3)H12B—C12—H12C109.5
C5—C6—H6119.3
C7—N1—N2—C81.9 (3)N2—N1—C7—C1179.9 (2)
C6—C1—C2—C31.8 (3)C6—C1—C7—N159.6 (3)
C7—C1—C2—C3178.2 (2)C2—C1—C7—N1116.8 (3)
C6—C1—C2—Cl1175.96 (18)C6—C1—C7—C9117.7 (3)
C7—C1—C2—Cl10.5 (3)C2—C1—C7—C965.9 (3)
C1—C2—C3—C40.9 (4)N1—N2—C8—N3178.7 (2)
Cl1—C2—C3—C4176.9 (2)N1—N2—C8—N43.6 (4)
C1—C2—C3—Cl2179.97 (18)C9—N4—C8—N3178.4 (2)
Cl1—C2—C3—Cl22.2 (3)C9—N4—C8—N20.7 (4)
C2—C3—C4—C50.4 (4)C8—N4—C9—N5175.6 (2)
Cl2—C3—C4—C5178.7 (2)C8—N4—C9—C73.7 (3)
C3—C4—C5—C60.7 (4)N1—C7—C9—N5173.8 (2)
C4—C5—C6—C10.2 (4)C1—C7—C9—N53.4 (4)
C2—C1—C6—C51.5 (4)N1—C7—C9—N45.4 (4)
C7—C1—C6—C5178.0 (2)C1—C7—C9—N4177.4 (2)
N2—N1—C7—C92.4 (4)
(LAM_2-propanol_solvate) top
Crystal data top
C9H7Cl2N5·2(C3H8O)F(000) = 792
Mr = 376.28Dx = 1.228 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.5757 (10) ÅCell parameters from 1076 reflections
b = 12.8768 (19) Åθ = 3.0–72.4°
c = 15.0121 (17) ŵ = 3.01 mm1
β = 95.258 (8)°T = 296 K
V = 2035.8 (4) Å3Prism, colourless
Z = 40.60 × 0.38 × 0.24 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
1794 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.109
ω scansθmax = 67.5°, θmin = 4.5°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.36.21. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1012
Tmin = 0.397, Tmax = 1.000k = 1515
20445 measured reflectionsl = 1717
3668 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.080H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.272 w = 1/[σ2(Fo2) + (0.1359P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3668 reflectionsΔρmax = 0.27 e Å3
256 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.06053 (17)0.49851 (11)0.19269 (10)0.1088 (6)
Cl20.0667 (2)0.36294 (18)0.03533 (11)0.1466 (9)
O10.0146 (4)0.1620 (6)0.7384 (3)0.151 (2)
H11O0.041 (6)0.184 (7)0.768 (5)0.181*
O20.2331 (4)0.6938 (4)0.6910 (3)0.1110 (13)
H12O0.299 (4)0.686 (5)0.725 (4)0.133*
N10.3187 (3)0.3837 (3)0.3625 (2)0.0649 (9)
N20.3727 (3)0.4364 (3)0.4344 (2)0.0632 (9)
N30.3479 (3)0.5382 (4)0.5559 (3)0.0751 (11)
N40.1665 (3)0.4786 (3)0.4767 (2)0.0674 (9)
N50.0113 (4)0.4158 (4)0.3959 (3)0.0838 (12)
C10.1427 (4)0.3178 (4)0.2673 (3)0.0662 (11)
C20.0753 (4)0.3659 (4)0.1945 (3)0.0733 (12)
C30.0228 (5)0.3060 (5)0.1238 (3)0.0888 (15)
C40.0403 (6)0.2015 (5)0.1232 (4)0.1062 (19)
H40.00480.16200.07530.127*
C50.1099 (7)0.1544 (5)0.1929 (5)0.119 (2)
H50.12370.08310.19170.142*
C60.1602 (5)0.2121 (4)0.2655 (4)0.0947 (16)
H60.20600.17920.31330.114*
C70.1947 (4)0.3784 (3)0.3462 (3)0.0609 (10)
C80.2938 (4)0.4831 (3)0.4865 (3)0.0618 (10)
C90.1151 (4)0.4252 (3)0.4064 (3)0.0644 (11)
C100.0376 (8)0.1601 (9)0.6473 (5)0.135 (3)
H10A0.10800.20980.64030.162*0.52 (3)
H10B0.12420.13290.64700.162*0.48 (3)
C11A0.087 (2)0.0571 (12)0.6249 (11)0.144 (8)0.52 (3)
H11A0.12240.05610.56360.216*0.52 (3)
H11B0.02000.00700.63330.216*0.52 (3)
H11C0.15250.04010.66300.216*0.52 (3)
C11B0.032 (5)0.089 (4)0.593 (3)0.40 (5)0.48 (3)
H11D0.00580.08960.53260.596*0.48 (3)
H11E0.11890.11050.59480.596*0.48 (3)
H11F0.02800.01980.61700.596*0.48 (3)
C12A0.060 (3)0.193 (3)0.5894 (13)0.21 (2)0.52 (3)
H12A0.02510.19180.52810.321*0.52 (3)
H12B0.08740.26220.60520.321*0.52 (3)
H12C0.13110.14650.59710.321*0.52 (3)
C12B0.049 (4)0.2711 (15)0.623 (2)0.216 (18)0.48 (3)
H12D0.08370.27740.56190.324*0.48 (3)
H12E0.10370.30520.66130.324*0.48 (3)
H12F0.03360.30280.63000.324*0.48 (3)
C130.2862 (12)0.8237 (8)0.5907 (7)0.201 (5)
H13A0.37620.82240.60650.302*
H13B0.26170.89130.56820.302*
H13C0.26430.77260.54530.302*
C140.2219 (9)0.8015 (7)0.6672 (6)0.141 (3)
H140.13200.80980.64620.170*
C150.2406 (8)0.8731 (6)0.7457 (6)0.162 (4)
H15A0.18270.85490.78870.243*
H15B0.22500.94330.72610.243*
H15C0.32630.86710.77250.243*
H2N30.4289 (14)0.546 (6)0.561 (6)0.194*
H1N50.058 (6)0.447 (6)0.432 (4)0.194*
H1N30.309 (7)0.571 (6)0.595 (4)0.194*
H2N50.041 (8)0.369 (5)0.359 (4)0.194*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1308 (14)0.0950 (11)0.0965 (10)0.0158 (8)0.0125 (9)0.0012 (7)
Cl20.1386 (17)0.209 (2)0.0844 (10)0.0109 (14)0.0308 (10)0.0181 (11)
O10.078 (3)0.269 (7)0.105 (4)0.016 (4)0.010 (2)0.040 (4)
O20.089 (3)0.121 (3)0.119 (3)0.014 (2)0.010 (2)0.020 (3)
N10.055 (2)0.076 (2)0.064 (2)0.0036 (16)0.0053 (15)0.0070 (16)
N20.0465 (18)0.077 (2)0.065 (2)0.0038 (15)0.0024 (14)0.0044 (16)
N30.051 (2)0.104 (3)0.070 (2)0.001 (2)0.0011 (17)0.023 (2)
N40.0458 (18)0.089 (3)0.067 (2)0.0007 (16)0.0032 (14)0.0168 (18)
N50.044 (2)0.119 (4)0.089 (3)0.002 (2)0.0042 (17)0.035 (2)
C10.052 (2)0.079 (3)0.068 (2)0.002 (2)0.0086 (18)0.013 (2)
C20.060 (3)0.087 (3)0.073 (3)0.001 (2)0.007 (2)0.014 (2)
C30.073 (3)0.125 (5)0.067 (3)0.001 (3)0.001 (2)0.024 (3)
C40.099 (4)0.116 (5)0.103 (4)0.022 (4)0.008 (3)0.049 (4)
C50.151 (6)0.092 (4)0.111 (5)0.001 (4)0.001 (4)0.039 (4)
C60.099 (4)0.084 (4)0.099 (4)0.009 (3)0.002 (3)0.023 (3)
C70.053 (2)0.069 (2)0.060 (2)0.0001 (19)0.0027 (17)0.0059 (18)
C80.052 (2)0.071 (3)0.063 (2)0.0023 (18)0.0021 (17)0.0004 (19)
C90.045 (2)0.080 (3)0.068 (2)0.0015 (19)0.0023 (17)0.012 (2)
C100.124 (6)0.179 (9)0.102 (5)0.007 (5)0.011 (4)0.026 (5)
C11A0.19 (2)0.123 (14)0.127 (12)0.025 (12)0.029 (11)0.007 (10)
C11B0.39 (9)0.48 (8)0.31 (5)0.30 (8)0.00 (5)0.10 (6)
C12A0.24 (3)0.31 (5)0.106 (12)0.09 (3)0.069 (15)0.025 (19)
C12B0.31 (4)0.15 (2)0.18 (2)0.01 (2)0.06 (3)0.065 (17)
C130.281 (14)0.171 (9)0.156 (9)0.042 (9)0.040 (9)0.010 (7)
C140.143 (7)0.122 (6)0.157 (8)0.010 (5)0.004 (6)0.013 (6)
C150.152 (8)0.137 (6)0.201 (9)0.018 (5)0.041 (6)0.075 (6)
Geometric parameters (Å, º) top
Cl1—C21.714 (5)C10—C11A1.455 (14)
Cl2—C31.723 (6)C10—C11B1.466 (17)
O1—C101.427 (8)C10—C12A1.471 (14)
O1—H11O0.82 (2)C10—C12B1.478 (14)
O2—C141.435 (9)C10—H10A0.9800
O2—H12O0.83 (2)C10—H10B0.9800
N1—C71.313 (5)C11A—H11A0.9600
N1—N21.356 (4)C11A—H11B0.9600
N2—C81.337 (5)C11A—H11C0.9600
N3—C81.344 (5)C11B—H11D0.9600
N3—H2N30.859 (10)C11B—H11E0.9600
N3—H1N30.861 (10)C11B—H11F0.9600
N4—C91.332 (5)C12A—H12A0.9600
N4—C81.342 (5)C12A—H12B0.9600
N5—C91.336 (5)C12A—H12C0.9600
N5—H1N50.862 (10)C12B—H12D0.9600
N5—H2N50.861 (10)C12B—H12E0.9600
C1—C61.374 (6)C12B—H12F0.9600
C1—C21.395 (6)C13—C141.418 (11)
C1—C71.482 (5)C13—H13A0.9600
C2—C31.386 (6)C13—H13B0.9600
C3—C41.358 (8)C13—H13C0.9600
C4—C51.366 (9)C14—C151.494 (9)
C4—H40.9300C14—H140.9800
C5—C61.384 (7)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C91.424 (5)
C10—O1—H11O107 (6)C12A—C10—H10A108.4
C14—O2—H12O108 (5)O1—C10—H10B106.9
C7—N1—N2120.9 (3)C11B—C10—H10B106.9
C8—N2—N1116.8 (3)C12B—C10—H10B106.9
C8—N3—H2N3119 (6)C10—C11A—H11A109.5
C8—N3—H1N3127 (6)C10—C11A—H11B109.5
H2N3—N3—H1N3114 (7)H11A—C11A—H11B109.5
C9—N4—C8116.2 (3)C10—C11A—H11C109.5
C9—N5—H1N5121 (6)H11A—C11A—H11C109.5
C9—N5—H2N5116 (6)H11B—C11A—H11C109.5
H1N5—N5—H2N5122 (8)C10—C11B—H11D109.5
C6—C1—C2119.0 (4)C10—C11B—H11E109.5
C6—C1—C7119.8 (4)H11D—C11B—H11E109.5
C2—C1—C7121.3 (4)C10—C11B—H11F109.5
C3—C2—C1119.5 (5)H11D—C11B—H11F109.5
C3—C2—Cl1120.9 (4)H11E—C11B—H11F109.5
C1—C2—Cl1119.6 (3)C10—C12A—H12A109.5
C4—C3—C2120.8 (5)C10—C12A—H12B109.5
C4—C3—Cl2118.8 (4)H12A—C12A—H12B109.5
C2—C3—Cl2120.4 (5)C10—C12A—H12C109.5
C3—C4—C5119.9 (5)H12A—C12A—H12C109.5
C3—C4—H4120.1H12B—C12A—H12C109.5
C5—C4—H4120.1C10—C12B—H12D109.5
C4—C5—C6120.4 (6)C10—C12B—H12E109.5
C4—C5—H5119.8H12D—C12B—H12E109.5
C6—C5—H5119.8C10—C12B—H12F109.5
C1—C6—C5120.3 (6)H12D—C12B—H12F109.5
C1—C6—H6119.8H12E—C12B—H12F109.5
C5—C6—H6119.8C14—C13—H13A109.5
N1—C7—C9119.9 (4)C14—C13—H13B109.5
N1—C7—C1117.8 (4)H13A—C13—H13B109.5
C9—C7—C1122.2 (4)C14—C13—H13C109.5
N2—C8—N4126.1 (4)H13A—C13—H13C109.5
N2—C8—N3116.5 (4)H13B—C13—H13C109.5
N4—C8—N3117.3 (4)C13—C14—O2111.3 (8)
N4—C9—N5118.1 (4)C13—C14—C15118.4 (8)
N4—C9—C7119.8 (4)O2—C14—C15113.5 (7)
N5—C9—C7122.0 (4)C13—C14—H14103.9
O1—C10—C11A109.7 (10)O2—C14—H14103.9
O1—C10—C11B111.8 (18)C15—C14—H14103.9
O1—C10—C12A109.3 (11)C14—C15—H15A109.5
C11A—C10—C12A112.6 (15)C14—C15—H15B109.5
O1—C10—C12B103.6 (12)H15A—C15—H15B109.5
C11B—C10—C12B120 (2)C14—C15—H15C109.5
O1—C10—H10A108.4H15A—C15—H15C109.5
C11A—C10—H10A108.4H15B—C15—H15C109.5
C7—N1—N2—C80.8 (6)N2—N1—C7—C1178.9 (4)
C6—C1—C2—C32.7 (7)C6—C1—C7—N166.2 (6)
C7—C1—C2—C3176.8 (4)C2—C1—C7—N1114.2 (5)
C6—C1—C2—Cl1176.2 (4)C6—C1—C7—C9110.3 (5)
C7—C1—C2—Cl14.2 (6)C2—C1—C7—C969.3 (6)
C1—C2—C3—C42.4 (8)N1—N2—C8—N43.4 (6)
Cl1—C2—C3—C4176.5 (4)N1—N2—C8—N3177.8 (4)
C1—C2—C3—Cl2177.2 (4)C9—N4—C8—N22.4 (6)
Cl1—C2—C3—Cl23.9 (6)C9—N4—C8—N3178.8 (4)
C2—C3—C4—C50.2 (9)C8—N4—C9—N5177.8 (4)
Cl2—C3—C4—C5179.4 (5)C8—N4—C9—C71.0 (6)
C3—C4—C5—C61.7 (11)N1—C7—C9—N43.3 (6)
C2—C1—C6—C50.9 (8)C1—C7—C9—N4179.7 (4)
C7—C1—C6—C5178.7 (5)N1—C7—C9—N5175.4 (5)
C4—C5—C6—C11.4 (10)C1—C7—C9—N51.0 (7)
N2—N1—C7—C92.4 (6)
(LAM_n-butanol_solvate) top
Crystal data top
C13H17Cl2N5OZ = 4
Mr = 330.21F(000) = 688
Triclinic, P1Dx = 1.325 Mg m3
a = 10.8596 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.4487 (13) ÅCell parameters from 1904 reflections
c = 15.5823 (14) Åθ = 3.0–72.5°
α = 98.562 (8)°µ = 3.58 mm1
β = 101.242 (7)°T = 296 K
γ = 115.425 (10)°Stick, colourless
V = 1655.9 (3) Å30.68 × 0.38 × 0.25 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
3774 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.052
ω scansθmax = 68.0°, θmin = 3.0°
Absorption correction: multi-scanh = 1311
Tmin = 0.527, Tmax = 1.000k = 1213
16409 measured reflectionsl = 1818
6028 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.072 w = 1/[σ2(Fo2) + (0.1272P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.249(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.39 e Å3
6028 reflectionsΔρmin = 0.30 e Å3
391 parametersExtinction correction: SHELXL-2019/2 (Sheldrick 2019), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
10 restraintsExtinction coefficient: 0.0027 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.8736 (2)0.52001 (17)0.87200 (10)0.1382 (6)
Cl1B0.24521 (9)0.18746 (10)0.23534 (7)0.0852 (3)
Cl2A1.1096 (3)0.7627 (3)1.03321 (11)0.1905 (10)
Cl2B0.47628 (15)0.08172 (16)0.09918 (9)0.1353 (6)
O1A0.5304 (4)0.7420 (5)0.7670 (2)0.1349 (14)
H1A0.5609360.6933620.7460830.202*
O1B0.4772 (3)0.1073 (4)0.3504 (3)0.1227 (12)
H1B0.4480660.1399310.3130870.184*
N1A0.6296 (3)0.5752 (3)0.6904 (2)0.0764 (8)
N1B0.0501 (3)0.1760 (3)0.4282 (2)0.0735 (7)
N2A0.5233 (3)0.4763 (3)0.6220 (2)0.0799 (8)
N2B0.1601 (3)0.2808 (3)0.49119 (19)0.0750 (7)
N3A0.4500 (3)0.2955 (3)0.5052 (2)0.0859 (9)
H3A10.3647290.2842840.4980080.103*
H3A20.4657120.2412680.4701760.103*
N3B0.2426 (3)0.4718 (3)0.6027 (2)0.0831 (9)
H3B10.2303090.5304220.6361820.100*
H3B20.3263400.4789990.6102040.100*
N4A0.6894 (3)0.4101 (3)0.58071 (19)0.0704 (7)
N4B0.0025 (3)0.3615 (3)0.52932 (18)0.0701 (7)
N5A0.9268 (3)0.5315 (3)0.6589 (2)0.0808 (8)
H5A10.9455220.4809160.6228580.097*
H5A20.9945500.5964030.7024230.097*
N5B0.2351 (3)0.2455 (3)0.4537 (2)0.0895 (10)
H5B10.2488340.3020780.4880250.107*
H5B20.3058130.1798280.4121200.107*
C1A0.8702 (4)0.7053 (4)0.7848 (2)0.0722 (8)
C1B0.1933 (3)0.0394 (4)0.3446 (2)0.0713 (8)
C2A0.9304 (4)0.6817 (4)0.8643 (3)0.0864 (10)
C2B0.2738 (3)0.0393 (3)0.2624 (2)0.0725 (8)
C3A1.0326 (5)0.7889 (6)0.9362 (3)0.1055 (14)
C3B0.3769 (4)0.0807 (4)0.2010 (3)0.0921 (12)
C4B0.4008 (5)0.2019 (5)0.2209 (4)0.1132 (16)
H4B0.4699180.2822250.1797040.136*
C4A1.0737 (5)0.9187 (6)0.9302 (4)0.1152 (17)
H4A1.1413850.9902720.9787130.138*
C5A1.0156 (5)0.9423 (5)0.8537 (4)0.1112 (15)
H5A1.0442271.0300840.8501990.133*
C5B0.3225 (6)0.2033 (5)0.3016 (4)0.1156 (16)
H5B0.3389910.2843250.3149830.139*
C6A0.9141 (4)0.8370 (4)0.7807 (3)0.0873 (10)
H6A0.8752220.8547430.7287610.105*
C6B0.2198 (5)0.0841 (4)0.3622 (3)0.0921 (11)
H6B0.1667630.0858300.4161520.111*
C7A0.7609 (3)0.5937 (4)0.7072 (2)0.0690 (8)
C7B0.0793 (3)0.1628 (3)0.4117 (2)0.0653 (7)
C8A0.5569 (3)0.3962 (4)0.5702 (2)0.0717 (8)
C8B0.1318 (3)0.3699 (4)0.5393 (2)0.0678 (8)
C9A0.7923 (3)0.5091 (3)0.6471 (2)0.0693 (8)
C9B0.1050 (3)0.2594 (4)0.4648 (2)0.0681 (8)
C10A0.5708 (8)0.7697 (9)0.8628 (4)0.150 (3)
H10A0.5393860.8318980.8866000.180*
H10B0.6739520.8140650.8849320.180*
C10B0.3845 (9)0.0332 (10)0.3277 (9)0.250 (6)
H10C0.3861500.0691070.2677150.300*
H10D0.4299970.0682680.3688700.300*
C11A0.5132 (15)0.6501 (14)0.8997 (6)0.217 (5)
H11A0.5596150.6740330.9641990.260*
H11B0.5292550.5797160.8695000.260*
C11B0.1474 (14)0.1900 (16)0.3043 (10)0.301 (9)
H11C0.1550270.2318480.3534130.361*
H11D0.1519270.2453040.2526400.361*
C12A0.353 (2)0.6026 (18)0.8821 (11)0.237 (7)0.83
H12A0.3369350.6752610.9085260.285*0.83
H12B0.3056630.5728920.8174160.285*0.83
C12C0.401 (5)0.530 (3)0.873 (3)0.111 (10)0.17
H12C0.4356740.4649920.8706920.134*0.17
H12D0.3502330.5188970.8112300.134*0.17
C12B0.2607 (19)0.0843 (13)0.3264 (13)0.402 (13)
H12E0.2296160.0288710.2967430.482*
H12F0.2700970.0528690.3898340.482*
C13A0.2977 (16)0.494 (2)0.9230 (10)0.311 (9)
H13A0.3408650.5256720.9874450.466*
H13B0.3190670.4247670.8988970.466*
H13C0.1963820.4580980.9100200.466*
C13B0.0182 (12)0.2094 (16)0.2836 (10)0.291 (9)
H13D0.0042100.1616590.3336760.437*
H13E0.0460640.3034690.2704440.437*
H13F0.0002140.1776630.2313380.437*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.1918 (16)0.1237 (11)0.1065 (9)0.0817 (11)0.0344 (10)0.0399 (8)
Cl1B0.0768 (5)0.0884 (6)0.0870 (6)0.0436 (5)0.0111 (4)0.0161 (5)
Cl2A0.212 (2)0.231 (2)0.0947 (10)0.1147 (18)0.0253 (11)0.0104 (11)
Cl2B0.1159 (9)0.1353 (12)0.1056 (9)0.0555 (8)0.0211 (7)0.0223 (7)
O1A0.151 (3)0.181 (4)0.111 (2)0.127 (3)0.029 (2)0.004 (2)
O1B0.0789 (18)0.118 (3)0.137 (3)0.0365 (18)0.0151 (18)0.007 (2)
N1A0.0673 (15)0.0868 (19)0.0793 (17)0.0442 (15)0.0235 (13)0.0059 (14)
N1B0.0698 (15)0.0818 (18)0.0802 (16)0.0489 (14)0.0213 (13)0.0119 (14)
N2A0.0649 (15)0.092 (2)0.0857 (18)0.0473 (15)0.0199 (13)0.0014 (15)
N2B0.0662 (14)0.0853 (18)0.0808 (17)0.0492 (14)0.0176 (13)0.0042 (14)
N3A0.0619 (15)0.102 (2)0.0873 (19)0.0446 (16)0.0163 (14)0.0030 (17)
N3B0.0619 (15)0.094 (2)0.0893 (19)0.0444 (15)0.0139 (13)0.0000 (16)
N4A0.0582 (13)0.0785 (17)0.0784 (16)0.0387 (13)0.0228 (12)0.0077 (13)
N4B0.0621 (14)0.0828 (18)0.0719 (15)0.0450 (13)0.0184 (12)0.0058 (13)
N5A0.0603 (14)0.086 (2)0.0900 (19)0.0391 (14)0.0192 (13)0.0045 (15)
N5B0.0649 (15)0.101 (2)0.093 (2)0.0487 (16)0.0111 (14)0.0144 (17)
C1A0.0699 (17)0.079 (2)0.0734 (18)0.0420 (16)0.0253 (15)0.0072 (15)
C1B0.0694 (17)0.0711 (19)0.0819 (19)0.0423 (15)0.0244 (15)0.0113 (15)
C2A0.094 (2)0.094 (3)0.077 (2)0.051 (2)0.0259 (18)0.0142 (19)
C2B0.0638 (16)0.0682 (19)0.082 (2)0.0341 (15)0.0190 (15)0.0032 (15)
C3A0.101 (3)0.129 (4)0.078 (2)0.060 (3)0.012 (2)0.003 (3)
C3B0.074 (2)0.088 (3)0.096 (3)0.0383 (19)0.0106 (18)0.007 (2)
C4B0.097 (3)0.076 (3)0.136 (4)0.032 (2)0.022 (3)0.013 (3)
C4A0.096 (3)0.118 (4)0.099 (3)0.043 (3)0.015 (2)0.021 (3)
C5A0.111 (3)0.087 (3)0.120 (4)0.044 (3)0.033 (3)0.007 (3)
C5B0.128 (4)0.070 (3)0.137 (4)0.042 (3)0.038 (3)0.012 (3)
C6A0.095 (2)0.084 (3)0.092 (2)0.053 (2)0.032 (2)0.011 (2)
C6B0.100 (3)0.079 (2)0.105 (3)0.051 (2)0.031 (2)0.020 (2)
C7A0.0631 (16)0.078 (2)0.0724 (18)0.0400 (15)0.0226 (14)0.0133 (15)
C7B0.0661 (16)0.0685 (18)0.0694 (17)0.0403 (14)0.0204 (13)0.0123 (14)
C8A0.0619 (16)0.082 (2)0.0755 (19)0.0392 (16)0.0246 (14)0.0108 (16)
C8B0.0625 (16)0.080 (2)0.0695 (17)0.0431 (15)0.0178 (13)0.0139 (15)
C9A0.0610 (16)0.075 (2)0.0786 (19)0.0387 (15)0.0246 (14)0.0126 (16)
C9B0.0632 (16)0.082 (2)0.0690 (17)0.0447 (16)0.0199 (14)0.0125 (15)
C10A0.173 (6)0.193 (7)0.104 (4)0.135 (6)0.006 (4)0.015 (4)
C10B0.137 (6)0.156 (8)0.330 (15)0.012 (6)0.089 (8)0.056 (8)
C11A0.307 (15)0.279 (16)0.108 (5)0.195 (14)0.035 (7)0.025 (7)
C11B0.184 (11)0.328 (19)0.302 (17)0.020 (13)0.063 (12)0.163 (16)
C12A0.267 (19)0.219 (15)0.192 (13)0.117 (14)0.016 (12)0.066 (12)
C12C0.14 (3)0.056 (13)0.11 (2)0.042 (16)0.024 (19)0.000 (13)
C12B0.297 (18)0.179 (12)0.55 (3)0.059 (12)0.17 (2)0.069 (15)
C13A0.317 (19)0.41 (3)0.241 (15)0.185 (19)0.110 (14)0.118 (17)
C13B0.182 (10)0.39 (2)0.39 (2)0.156 (14)0.118 (13)0.234 (19)
Geometric parameters (Å, º) top
Cl1A—C2A1.714 (5)C4B—C5B1.380 (7)
Cl1B—C2B1.722 (4)C4B—H4B0.9300
Cl2A—C3A1.712 (5)C4A—C5A1.356 (8)
Cl2B—C3B1.732 (5)C4A—H4A0.9300
O1A—C10A1.416 (7)C5A—C6A1.387 (6)
O1A—H1A0.8200C5A—H5A0.9300
O1B—C10B1.423 (9)C5B—C6B1.377 (7)
O1B—H1B0.8200C5B—H5B0.9300
N1A—C7A1.313 (4)C6A—H6A0.9300
N1A—N2A1.338 (4)C6B—H6B0.9300
N1B—C7B1.314 (4)C7A—C9A1.438 (4)
N1B—N2B1.338 (4)C7B—C9B1.439 (4)
N2A—C8A1.344 (4)C10A—C11A1.495 (13)
N2B—C8B1.352 (4)C10A—H10A0.9700
N3A—C8A1.321 (5)C10A—H10B0.9700
N3A—H3A10.8600C10B—C12B1.209 (16)
N3A—H3A20.8600C10B—H10C0.9700
N3B—C8B1.331 (4)C10B—H10D0.9700
N3B—H3B10.8600C11A—C12C1.32 (3)
N3B—H3B20.8600C11A—C12A1.536 (19)
N4A—C9A1.310 (4)C11A—H11A0.9700
N4A—C8A1.351 (4)C11A—H11B0.9700
N4B—C9B1.328 (4)C11B—C12B1.237 (15)
N4B—C8B1.341 (4)C11B—C13B1.287 (13)
N5A—C9A1.339 (4)C11B—H11C0.9700
N5A—H5A10.8600C11B—H11D0.9700
N5A—H5A20.8600C12A—C13A1.436 (18)
N5B—C9B1.324 (4)C12A—H12A0.9700
N5B—H5B10.8600C12A—H12B0.9700
N5B—H5B20.8600C12C—C13A1.44 (4)
C1A—C6A1.388 (5)C12C—H12C0.9700
C1A—C2A1.404 (5)C12C—H12D0.9700
C1A—C7A1.477 (5)C12B—H12E0.9700
C1B—C6B1.399 (5)C12B—H12F0.9700
C1B—C2B1.402 (5)C13A—H13A0.9600
C1B—C7B1.474 (5)C13A—H13B0.9600
C2A—C3A1.389 (6)C13A—H13C0.9600
C2B—C3B1.388 (5)C13B—H13D0.9600
C3A—C4A1.381 (8)C13B—H13E0.9600
C3B—C4B1.392 (7)C13B—H13F0.9600
C10A—O1A—H1A109.5N3B—C8B—N4B118.5 (3)
C10B—O1B—H1B109.5N3B—C8B—N2B116.1 (3)
C7A—N1A—N2A122.1 (3)N4B—C8B—N2B125.3 (3)
C7B—N1B—N2B121.4 (3)N4A—C9A—N5A119.9 (3)
N1A—N2A—C8A116.9 (3)N4A—C9A—C7A120.1 (3)
N1B—N2B—C8B117.2 (2)N5A—C9A—C7A120.1 (3)
C8A—N3A—H3A1120.0N5B—C9B—N4B119.0 (3)
C8A—N3A—H3A2120.0N5B—C9B—C7B121.4 (3)
H3A1—N3A—H3A2120.0N4B—C9B—C7B119.5 (3)
C8B—N3B—H3B1120.0O1A—C10A—C11A115.3 (7)
C8B—N3B—H3B2120.0O1A—C10A—H10A108.5
H3B1—N3B—H3B2120.0C11A—C10A—H10A108.5
C9A—N4A—C8A117.0 (3)O1A—C10A—H10B108.5
C9B—N4B—C8B116.8 (3)C11A—C10A—H10B108.5
C9A—N5A—H5A1120.0H10A—C10A—H10B107.5
C9A—N5A—H5A2120.0C12B—C10B—O1B125.1 (12)
H5A1—N5A—H5A2120.0C12B—C10B—H10C106.1
C9B—N5B—H5B1120.0O1B—C10B—H10C106.1
C9B—N5B—H5B2120.0C12B—C10B—H10D106.1
H5B1—N5B—H5B2120.0O1B—C10B—H10D106.1
C6A—C1A—C2A118.5 (4)H10C—C10B—H10D106.3
C6A—C1A—C7A120.1 (3)C12C—C11A—C10A137 (2)
C2A—C1A—C7A121.4 (3)C10A—C11A—C12A106.7 (11)
C6B—C1B—C2B118.1 (3)C10A—C11A—H11A110.4
C6B—C1B—C7B118.5 (3)C12A—C11A—H11A110.4
C2B—C1B—C7B123.3 (3)C10A—C11A—H11B110.4
C3A—C2A—C1A120.0 (4)C12A—C11A—H11B110.4
C3A—C2A—Cl1A120.8 (4)H11A—C11A—H11B108.6
C1A—C2A—Cl1A119.2 (3)C12B—C11B—C13B130 (2)
C3B—C2B—C1B120.4 (4)C12B—C11B—H11C104.8
C3B—C2B—Cl1B118.9 (3)C13B—C11B—H11C104.8
C1B—C2B—Cl1B120.7 (3)C12B—C11B—H11D104.8
C4A—C3A—C2A120.1 (5)C13B—C11B—H11D104.8
C4A—C3A—Cl2A119.0 (4)H11C—C11B—H11D105.8
C2A—C3A—Cl2A120.9 (5)C13A—C12A—C11A107.4 (13)
C2B—C3B—C4B120.0 (4)C13A—C12A—H12A110.2
C2B—C3B—Cl2B120.7 (4)C11A—C12A—H12A110.2
C4B—C3B—Cl2B119.4 (3)C13A—C12A—H12B110.2
C5B—C4B—C3B120.3 (4)C11A—C12A—H12B110.2
C5B—C4B—H4B119.9H12A—C12A—H12B108.5
C3B—C4B—H4B119.9C11A—C12C—C13A121 (2)
C5A—C4A—C3A120.2 (5)C11A—C12C—H12C107.2
C5A—C4A—H4A119.9C13A—C12C—H12C107.2
C3A—C4A—H4A119.9C11A—C12C—H12D107.2
C4A—C5A—C6A120.8 (5)C13A—C12C—H12D107.2
C4A—C5A—H5A119.6H12C—C12C—H12D106.8
C6A—C5A—H5A119.6C10B—C12B—C11B146 (2)
C6B—C5B—C4B119.6 (5)C10B—C12B—H12C100.5
C6B—C5B—H5B120.2C11B—C12B—H12C100.5
C4B—C5B—H5B120.2C10B—C12B—H12D100.5
C5A—C6A—C1A120.4 (4)C11B—C12B—H12D100.5
C5A—C6A—H6A119.8H12C—C12B—H12D104.3
C1A—C6A—H6A119.8C12A—C13A—H13A109.5
C5B—C6B—C1B121.6 (4)C12A—C13A—H13B109.5
C5B—C6B—H6B119.2H13A—C13A—H13B109.5
C1B—C6B—H6B119.2C12A—C13A—H13C109.5
N1A—C7A—C9A118.7 (3)H13A—C13A—H13C109.5
N1A—C7A—C1A117.8 (3)H13B—C13A—H13C109.5
C9A—C7A—C1A123.4 (3)C11B—C13B—H13D109.5
N1B—C7B—C9B119.6 (3)C11B—C13B—H13E109.5
N1B—C7B—C1B116.5 (3)H13D—C13B—H13E109.5
C9B—C7B—C1B123.6 (3)C11B—C13B—H13F109.5
N3A—C8A—N2A116.3 (3)H13D—C13B—H13F109.5
N3A—C8A—N4A118.7 (3)H13E—C13B—H13F109.5
N2A—C8A—N4A125.1 (3)
C7A—N1A—N2A—C8A0.4 (5)C6A—C1A—C7A—C9A106.8 (4)
C7B—N1B—N2B—C8B2.3 (5)C2A—C1A—C7A—C9A74.1 (5)
C6A—C1A—C2A—C3A0.7 (5)N2B—N1B—C7B—C9B2.7 (5)
C7A—C1A—C2A—C3A179.8 (3)N2B—N1B—C7B—C1B176.6 (3)
C6A—C1A—C2A—Cl1A178.0 (3)C6B—C1B—C7B—N1B60.9 (4)
C7A—C1A—C2A—Cl1A1.1 (5)C2B—C1B—C7B—N1B117.0 (4)
C6B—C1B—C2B—C3B0.3 (5)C6B—C1B—C7B—C9B112.7 (4)
C7B—C1B—C2B—C3B178.1 (3)C2B—C1B—C7B—C9B69.5 (5)
C6B—C1B—C2B—Cl1B179.0 (3)N1A—N2A—C8A—N3A177.3 (3)
C7B—C1B—C2B—Cl1B1.2 (4)N1A—N2A—C8A—N4A1.7 (6)
C1A—C2A—C3A—C4A0.9 (7)C9A—N4A—C8A—N3A178.4 (3)
Cl1A—C2A—C3A—C4A177.8 (4)C9A—N4A—C8A—N2A0.6 (6)
C1A—C2A—C3A—Cl2A179.0 (3)C9B—N4B—C8B—N3B179.3 (3)
Cl1A—C2A—C3A—Cl2A2.3 (6)C9B—N4B—C8B—N2B2.3 (5)
C1B—C2B—C3B—C4B0.0 (6)N1B—N2B—C8B—N3B178.7 (3)
Cl1B—C2B—C3B—C4B179.3 (3)N1B—N2B—C8B—N4B0.3 (5)
C1B—C2B—C3B—Cl2B179.8 (3)C8A—N4A—C9A—N5A177.4 (3)
Cl1B—C2B—C3B—Cl2B0.5 (4)C8A—N4A—C9A—C7A2.5 (5)
C2B—C3B—C4B—C5B0.1 (7)N1A—C7A—C9A—N4A4.5 (5)
Cl2B—C3B—C4B—C5B179.8 (4)C1A—C7A—C9A—N4A178.6 (3)
C2A—C3A—C4A—C5A0.7 (8)N1A—C7A—C9A—N5A175.4 (3)
Cl2A—C3A—C4A—C5A179.2 (4)C1A—C7A—C9A—N5A1.5 (5)
C3A—C4A—C5A—C6A0.2 (8)C8B—N4B—C9B—N5B178.6 (3)
C3B—C4B—C5B—C6B0.4 (8)C8B—N4B—C9B—C7B1.8 (5)
C4A—C5A—C6A—C1A0.0 (7)N1B—C7B—C9B—N5B176.1 (3)
C2A—C1A—C6A—C5A0.3 (5)C1B—C7B—C9B—N5B2.7 (5)
C7A—C1A—C6A—C5A179.4 (3)N1B—C7B—C9B—N4B0.6 (5)
C4B—C5B—C6B—C1B0.6 (8)C1B—C7B—C9B—N4B174.0 (3)
C2B—C1B—C6B—C5B0.6 (6)O1A—C10A—C11A—C12C27 (3)
C7B—C1B—C6B—C5B178.5 (4)O1A—C10A—C11A—C12A71.2 (11)
N2A—N1A—C7A—C9A3.3 (5)C10A—C11A—C12A—C13A175.9 (13)
N2A—N1A—C7A—C1A179.5 (3)C10A—C11A—C12C—C13A117 (3)
C6A—C1A—C7A—N1A70.2 (4)O1B—C10B—C12B—C11B170 (3)
C2A—C1A—C7A—N1A108.9 (4)C13B—C11B—C12B—C10B153 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.821.982.797 (4)178
O1B—H1B···O1Ai0.821.942.708 (6)155
N3A—H3A2···O1B0.862.293.135 (4)167
N3A—H3A1···N2B0.862.193.042 (4)173
N3B—H3B2···N2A0.862.132.983 (4)174
N5A—H5A1···N4Bii0.862.203.064 (4)177
N5B—H5B2···O1Biii0.862.092.809 (4)141
N5B—H5B1···N4Aiii0.862.152.999 (4)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
(LAM_tert-butanol_solvate) top
Crystal data top
C17H27Cl2N5O2Z = 2
Mr = 404.33F(000) = 428
Triclinic, P1Dx = 1.207 Mg m3
a = 7.437 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.302 (3) ÅCell parameters from 2105 reflections
c = 14.811 (3) Åθ = 2.9–72.3°
α = 79.70 (2)°µ = 2.79 mm1
β = 85.34 (3)°T = 296 K
γ = 88.71 (3)°Needle, colourless
V = 1112.8 (6) Å30.60 × 0.50 × 0.05 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
Rint = 0.198
Radiation source: Enhance (Cu) X-ray Sourceθmax = 70.0°, θmin = 3.0°
ω scansh = 89
9317 measured reflectionsk = 1212
4182 independent reflectionsl = 1718
878 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.125 w = 1/[σ2(Fo2) + (0.0986P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.353(Δ/σ)max < 0.001
S = 0.83Δρmax = 0.47 e Å3
4182 reflectionsΔρmin = 0.28 e Å3
242 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0018 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.5741 (4)0.3478 (3)0.33282 (19)0.1002 (11)
Cl20.8763 (5)0.3606 (3)0.4662 (2)0.1274 (14)
O1A0.8546 (10)0.6684 (7)0.1735 (5)0.086 (2)
O2B0.7140 (14)0.8594 (7)0.2657 (6)0.117 (3)
N10.6685 (11)0.1162 (7)0.1467 (5)0.076 (2)
N20.5559 (12)0.0894 (8)0.0853 (6)0.089 (3)
N30.3619 (12)0.1652 (8)0.0233 (6)0.108 (4)
H3A0.30700.22730.05750.129*
H3B0.34690.08430.02830.129*
N40.4914 (10)0.3225 (7)0.0441 (5)0.076 (2)
N50.6369 (10)0.4686 (7)0.1081 (5)0.078 (2)
H5A0.58350.52920.07190.093*
H5B0.70910.48970.14560.093*
C10.8318 (14)0.2508 (9)0.2230 (7)0.079 (3)
C20.7942 (12)0.2977 (9)0.3037 (7)0.073 (3)
C30.9224 (16)0.3031 (11)0.3652 (7)0.091 (3)
C41.0972 (16)0.2586 (12)0.3429 (8)0.104 (4)
H41.18660.26250.38270.124*
C51.1380 (14)0.2105 (12)0.2653 (8)0.104 (4)
H51.25410.17920.25320.125*
C61.0093 (14)0.2068 (10)0.2027 (8)0.093 (3)
H61.03980.17570.14820.111*
C70.6954 (12)0.2365 (9)0.1590 (6)0.068 (2)
C80.4707 (14)0.1944 (10)0.0379 (7)0.082 (3)
C90.6076 (13)0.3405 (10)0.1062 (6)0.072 (3)
C10A1.0510 (15)0.6828 (12)0.1615 (8)0.090 (3)
C10B0.6289 (19)0.8536 (13)0.3551 (8)0.102 (4)
C11A1.1158 (17)0.5811 (13)0.1048 (10)0.142 (5)
H11A1.24480.58510.09420.214*
H11B1.08150.49490.13710.214*
H11C1.06260.59850.04690.214*
C11B0.6264 (19)0.7076 (12)0.3941 (9)0.138 (5)
H11D0.57020.69370.45570.207*
H11E0.55970.66240.35650.207*
H11F0.74790.67410.39500.207*
C12A1.1246 (16)0.6508 (14)0.2583 (9)0.140 (6)
H12A1.25340.65960.25230.211*
H12B1.07240.71100.29580.211*
H12C1.09330.56210.28660.211*
C12B0.458 (2)0.9188 (15)0.3544 (10)0.168 (7)
H12D0.40530.91240.41640.253*
H12E0.47341.01000.32710.253*
H12F0.38000.87800.31930.253*
C13A1.0920 (17)0.8230 (12)0.1161 (10)0.136 (5)
H13A1.22030.83490.10750.204*
H13B1.04170.84120.05750.204*
H13C1.04020.88220.15450.204*
C13B0.763 (2)0.9206 (13)0.4105 (10)0.168 (7)
H13D0.71120.91920.47220.251*
H13E0.87550.87290.41230.251*
H13F0.78381.01030.38070.251*
H2BO0.72 (2)0.936 (6)0.238 (10)0.201*
H1AO0.806 (19)0.728 (11)0.197 (10)0.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.095 (2)0.123 (3)0.0884 (18)0.0047 (17)0.0194 (14)0.0290 (17)
Cl20.147 (3)0.148 (3)0.098 (2)0.009 (2)0.046 (2)0.035 (2)
O1A0.086 (5)0.089 (5)0.092 (5)0.009 (4)0.018 (4)0.032 (4)
O2B0.173 (8)0.075 (5)0.097 (6)0.043 (6)0.010 (6)0.004 (5)
N10.102 (6)0.054 (5)0.073 (5)0.009 (4)0.019 (4)0.006 (4)
N20.107 (7)0.079 (6)0.090 (6)0.011 (5)0.047 (5)0.025 (5)
N30.148 (8)0.062 (6)0.124 (8)0.010 (5)0.081 (7)0.017 (5)
N40.084 (6)0.064 (5)0.087 (5)0.009 (4)0.037 (4)0.019 (4)
N50.094 (6)0.063 (5)0.081 (5)0.015 (4)0.032 (4)0.015 (4)
C10.086 (7)0.062 (6)0.094 (7)0.007 (5)0.032 (6)0.020 (5)
C20.069 (6)0.067 (6)0.086 (6)0.002 (5)0.028 (5)0.014 (5)
C30.107 (9)0.086 (8)0.080 (7)0.001 (7)0.035 (6)0.006 (6)
C40.089 (8)0.120 (10)0.104 (9)0.004 (7)0.036 (7)0.012 (8)
C50.068 (7)0.147 (11)0.096 (8)0.020 (7)0.031 (6)0.011 (8)
C60.080 (7)0.098 (8)0.102 (8)0.035 (6)0.032 (6)0.017 (7)
C70.082 (7)0.046 (5)0.074 (6)0.008 (5)0.024 (5)0.001 (4)
C80.097 (8)0.067 (7)0.091 (7)0.017 (6)0.043 (6)0.027 (6)
C90.078 (6)0.063 (7)0.079 (6)0.014 (5)0.017 (5)0.022 (5)
C10A0.083 (8)0.090 (9)0.104 (8)0.009 (7)0.024 (6)0.028 (7)
C10B0.133 (11)0.086 (9)0.078 (7)0.028 (8)0.005 (7)0.001 (6)
C11A0.101 (10)0.132 (12)0.203 (16)0.009 (9)0.009 (10)0.061 (11)
C11B0.165 (14)0.109 (11)0.132 (12)0.010 (9)0.027 (10)0.016 (9)
C12A0.098 (9)0.193 (15)0.123 (11)0.005 (9)0.051 (8)0.014 (10)
C12B0.175 (16)0.165 (15)0.151 (15)0.072 (13)0.012 (12)0.001 (12)
C13A0.121 (11)0.094 (10)0.188 (15)0.021 (8)0.018 (10)0.011 (9)
C13B0.24 (2)0.125 (13)0.149 (14)0.021 (12)0.047 (14)0.028 (10)
Geometric parameters (Å, º) top
Cl1—C21.748 (10)C6—H60.9300
Cl2—C31.712 (11)C7—C91.392 (11)
O1A—C10A1.464 (13)C10A—C11A1.504 (15)
O1A—H1AO0.82 (2)C10A—C13A1.507 (14)
O2B—C10B1.412 (14)C10A—C12A1.554 (13)
O2B—H2BO0.82 (2)C10B—C12B1.424 (16)
N1—C71.306 (10)C10B—C11B1.511 (15)
N1—N21.353 (9)C10B—C13B1.585 (17)
N2—C81.355 (10)C11A—H11A0.9600
N3—C81.340 (10)C11A—H11B0.9600
N3—H3A0.8600C11A—H11C0.9600
N3—H3B0.8600C11B—H11D0.9600
N4—C91.351 (10)C11B—H11E0.9600
N4—C81.352 (11)C11B—H11F0.9600
N5—C91.348 (10)C12A—H12A0.9600
N5—H5A0.8600C12A—H12B0.9600
N5—H5B0.8600C12A—H12C0.9600
C1—C21.375 (13)C12B—H12D0.9600
C1—C61.413 (13)C12B—H12E0.9600
C1—C71.469 (11)C12B—H12F0.9600
C2—C31.380 (11)C13A—H13A0.9600
C3—C41.402 (15)C13A—H13B0.9600
C4—C51.340 (15)C13A—H13C0.9600
C4—H40.9300C13B—H13D0.9600
C5—C61.391 (12)C13B—H13E0.9600
C5—H50.9300C13B—H13F0.9600
C10A—O1A—H1AO111 (10)C13A—C10A—C12A111.1 (10)
C10B—O2B—H2BO111 (10)O2B—C10B—C12B112.4 (11)
C7—N1—N2122.1 (8)O2B—C10B—C11B103.4 (10)
N1—N2—C8116.1 (8)C12B—C10B—C11B115.8 (13)
C8—N3—H3A120.0O2B—C10B—C13B106.1 (12)
C8—N3—H3B120.0C12B—C10B—C13B110.9 (13)
H3A—N3—H3B120.0C11B—C10B—C13B107.5 (10)
C9—N4—C8113.4 (8)C10A—C11A—H11A109.5
C9—N5—H5A120.0C10A—C11A—H11B109.5
C9—N5—H5B120.0H11A—C11A—H11B109.5
H5A—N5—H5B120.0C10A—C11A—H11C109.5
C2—C1—C6118.2 (9)H11A—C11A—H11C109.5
C2—C1—C7123.7 (9)H11B—C11A—H11C109.5
C6—C1—C7118.0 (9)C10B—C11B—H11D109.5
C1—C2—C3122.6 (10)C10B—C11B—H11E109.5
C1—C2—Cl1119.4 (7)H11D—C11B—H11E109.5
C3—C2—Cl1118.0 (9)C10B—C11B—H11F109.5
C2—C3—C4117.6 (11)H11D—C11B—H11F109.5
C2—C3—Cl2122.9 (10)H11E—C11B—H11F109.5
C4—C3—Cl2119.5 (9)C10A—C12A—H12A109.5
C5—C4—C3121.4 (10)C10A—C12A—H12B109.5
C5—C4—H4119.3H12A—C12A—H12B109.5
C3—C4—H4119.3C10A—C12A—H12C109.5
C4—C5—C6121.0 (11)H12A—C12A—H12C109.5
C4—C5—H5119.5H12B—C12A—H12C109.5
C6—C5—H5119.5C10B—C12B—H12D109.5
C5—C6—C1119.2 (11)C10B—C12B—H12E109.5
C5—C6—H6120.4H12D—C12B—H12E109.5
C1—C6—H6120.4C10B—C12B—H12F109.5
N1—C7—C9118.9 (8)H12D—C12B—H12F109.5
N1—C7—C1115.7 (8)H12E—C12B—H12F109.5
C9—C7—C1125.1 (8)C10A—C13A—H13A109.5
N3—C8—N4118.6 (9)C10A—C13A—H13B109.5
N3—C8—N2114.8 (9)H13A—C13A—H13B109.5
N4—C8—N2126.5 (8)C10A—C13A—H13C109.5
N5—C9—N4113.3 (8)H13A—C13A—H13C109.5
N5—C9—C7123.7 (8)H13B—C13A—H13C109.5
N4—C9—C7122.9 (9)C10B—C13B—H13D109.5
O1A—C10A—C11A105.0 (9)C10B—C13B—H13E109.5
O1A—C10A—C13A107.9 (9)H13D—C13B—H13E109.5
C11A—C10A—C13A114.2 (12)C10B—C13B—H13F109.5
O1A—C10A—C12A107.8 (10)H13D—C13B—H13F109.5
C11A—C10A—C12A110.3 (11)H13E—C13B—H13F109.5
C7—N1—N2—C80.8 (15)N2—N1—C7—C1175.5 (9)
C6—C1—C2—C30.1 (16)C2—C1—C7—N1117.4 (11)
C7—C1—C2—C3176.1 (9)C6—C1—C7—N158.8 (14)
C6—C1—C2—Cl1177.9 (7)C2—C1—C7—C968.5 (15)
C7—C1—C2—Cl11.6 (14)C6—C1—C7—C9115.3 (11)
C1—C2—C3—C40.1 (16)C9—N4—C8—N3178.4 (10)
Cl1—C2—C3—C4177.9 (8)C9—N4—C8—N21.4 (16)
C1—C2—C3—Cl2179.7 (8)N1—N2—C8—N3179.2 (10)
Cl1—C2—C3—Cl21.9 (13)N1—N2—C8—N42.1 (17)
C2—C3—C4—C51.0 (19)C8—N4—C9—N5176.0 (9)
Cl2—C3—C4—C5178.8 (10)C8—N4—C9—C70.6 (15)
C3—C4—C5—C62 (2)N1—C7—C9—N5174.4 (10)
C4—C5—C6—C11.9 (18)C1—C7—C9—N50.5 (16)
C2—C1—C6—C51.0 (16)N1—C7—C9—N41.8 (16)
C7—C1—C6—C5175.5 (10)C1—C7—C9—N4175.7 (10)
N2—N1—C7—C91.0 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1AO···O2B0.82 (2)1.91 (3)2.733 (11)172 (15)
N3—H3B···N2i0.862.202.965 (12)149
N3—H3A···O1Aii0.862.273.094 (10)160
N5—H5A···N4ii0.862.193.025 (10)165
N5—H5B···O1A0.862.272.986 (10)140
O2B—H2BO···N1iii0.82 (2)2.15 (6)2.935 (10)160 (15)
N3—H3A···O1Aii0.862.273.094 (10)160
N3—H3B···N2i0.862.202.965 (12)149
N5—H5A···N4ii0.862.193.025 (10)165
N5—H5B···O1A0.862.272.986 (10)140
O1A—H1AO···O2B0.82 (2)1.91 (3)2.733 (11)172 (15)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
(LAM_n-pentanol_solvate) top
Crystal data top
C9H7Cl2N5·C5H12O·H2OZ = 2
Mr = 362.26F(000) = 380
Triclinic, P1Dx = 1.323 Mg m3
a = 7.6284 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.5181 (9) ÅCell parameters from 2686 reflections
c = 14.5190 (13) Åθ = 3.2–72.8°
α = 84.043 (8)°µ = 3.35 mm1
β = 75.989 (8)°T = 296 K
γ = 85.943 (9)°Prism, colourless
V = 909.41 (16) Å30.55 × 0.55 × 0.15 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
2735 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.035
ω scansθmax = 70.0°, θmin = 3.2°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.36.21. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 98
Tmin = 0.305, Tmax = 1.000k = 1010
9619 measured reflectionsl = 1717
3448 independent reflections
Refinement top
Refinement on F255 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.116P)2 + 0.1605P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3448 reflectionsΔρmax = 0.31 e Å3
238 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.27370 (10)0.13131 (15)0.14817 (7)0.1069 (4)
Cl20.01605 (15)0.23352 (17)0.01237 (6)0.1211 (5)
O10.2661 (3)0.4404 (2)0.48819 (16)0.0716 (5)
H1O0.191 (4)0.449 (5)0.5388 (17)0.107*
H2O0.251 (6)0.530 (2)0.463 (3)0.107*
O20.9522 (3)0.5374 (3)0.32149 (18)0.0841 (6)
H1O20.997 (6)0.612 (4)0.336 (3)0.126*
N10.1284 (3)0.1878 (2)0.35341 (15)0.0581 (5)
N20.2387 (3)0.2494 (2)0.40928 (15)0.0597 (5)
N30.4362 (3)0.2087 (2)0.49918 (18)0.0682 (6)
H1N30.485 (4)0.3039 (18)0.501 (2)0.082*
H2N30.510 (4)0.151 (4)0.518 (2)0.082*
N40.2907 (3)0.0107 (2)0.44159 (14)0.0529 (5)
N50.1348 (4)0.2235 (2)0.38520 (19)0.0702 (6)
H1N50.064 (4)0.267 (4)0.351 (2)0.084*
H2N50.190 (4)0.285 (3)0.412 (2)0.084*
C10.0216 (3)0.0203 (3)0.27542 (17)0.0541 (5)
C20.0460 (3)0.0957 (3)0.18461 (19)0.0636 (6)
C30.0665 (4)0.1397 (4)0.1240 (2)0.0727 (7)
C40.2471 (4)0.1087 (5)0.1523 (2)0.0843 (9)
H40.32310.13830.11150.101*
C50.3146 (4)0.0344 (5)0.2406 (2)0.0877 (10)
H50.43650.01270.25930.105*
C60.2042 (4)0.0085 (4)0.3018 (2)0.0713 (7)
H60.25280.05770.36200.086*
C70.0987 (3)0.0359 (3)0.34013 (17)0.0521 (5)
C80.3188 (3)0.1473 (3)0.44805 (17)0.0526 (5)
C90.1762 (3)0.0687 (3)0.38919 (17)0.0522 (5)
C100.8711 (6)0.5668 (5)0.2422 (3)0.1071 (12)
H10A0.94440.51410.18880.128*
H10B0.86780.67930.22320.128*
C110.6899 (7)0.5117 (8)0.2642 (4)0.1371 (19)
H11A0.61620.56820.31580.165*
H11B0.69340.40050.28670.165*
C120.6011 (9)0.5326 (9)0.1811 (4)0.175 (3)
H12A0.69510.51770.12390.209*0.61
H12B0.51980.44710.18910.209*0.61
H12C0.65160.62550.14200.209*0.39
H12D0.64500.44340.14410.209*0.39
C13A0.5030 (12)0.6739 (11)0.1637 (6)0.136 (3)0.61
H13A0.58600.75450.13170.163*0.61
H13B0.43490.71050.22370.163*0.61
C13B0.4112 (13)0.548 (2)0.1885 (8)0.140 (5)0.39
H13C0.35230.59880.24550.168*0.39
H13D0.36340.44420.19370.168*0.39
C140.3704 (10)0.6473 (11)0.1002 (5)0.194 (3)
H14A0.30430.74470.08880.291*0.61
H14B0.43820.61250.04050.291*0.61
H14C0.28730.56860.13240.291*0.61
H14D0.24200.65670.10630.291*0.39
H14E0.41630.75060.09570.291*0.39
H14F0.42740.59640.04390.291*0.39
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0566 (5)0.1677 (10)0.0906 (6)0.0246 (5)0.0224 (4)0.0400 (6)
Cl20.0991 (7)0.1816 (12)0.0766 (6)0.0128 (7)0.0324 (5)0.0483 (6)
O10.0870 (14)0.0428 (9)0.0889 (13)0.0058 (8)0.0341 (11)0.0018 (8)
O20.0957 (16)0.0699 (12)0.0971 (15)0.0094 (11)0.0476 (13)0.0075 (11)
N10.0634 (12)0.0486 (10)0.0667 (12)0.0006 (8)0.0276 (9)0.0015 (8)
N20.0706 (13)0.0414 (9)0.0731 (12)0.0015 (8)0.0331 (10)0.0029 (8)
N30.0803 (15)0.0430 (10)0.0924 (16)0.0086 (9)0.0486 (13)0.0014 (10)
N40.0570 (11)0.0410 (9)0.0652 (11)0.0036 (7)0.0270 (9)0.0002 (8)
N50.0855 (16)0.0444 (11)0.0939 (16)0.0124 (10)0.0516 (13)0.0048 (10)
C10.0520 (12)0.0517 (12)0.0610 (13)0.0016 (9)0.0207 (10)0.0014 (9)
C20.0494 (13)0.0737 (16)0.0678 (14)0.0016 (11)0.0197 (11)0.0056 (12)
C30.0688 (17)0.0879 (19)0.0624 (14)0.0020 (14)0.0253 (12)0.0091 (13)
C40.0612 (17)0.119 (3)0.0786 (18)0.0079 (16)0.0355 (14)0.0020 (17)
C50.0476 (15)0.131 (3)0.086 (2)0.0049 (16)0.0237 (14)0.0018 (19)
C60.0566 (15)0.0892 (19)0.0664 (15)0.0017 (13)0.0166 (12)0.0038 (13)
C70.0513 (12)0.0457 (11)0.0610 (12)0.0013 (9)0.0198 (10)0.0002 (9)
C80.0551 (12)0.0430 (11)0.0605 (12)0.0010 (9)0.0196 (10)0.0040 (9)
C90.0522 (12)0.0438 (11)0.0614 (12)0.0028 (8)0.0198 (10)0.0026 (9)
C100.122 (3)0.107 (3)0.105 (3)0.016 (2)0.056 (2)0.008 (2)
C110.116 (4)0.192 (5)0.119 (4)0.016 (3)0.060 (3)0.003 (3)
C120.146 (5)0.262 (8)0.143 (5)0.053 (5)0.091 (4)0.051 (5)
C13A0.116 (6)0.187 (9)0.118 (6)0.031 (6)0.054 (5)0.040 (6)
C13B0.105 (8)0.200 (13)0.130 (9)0.024 (8)0.049 (7)0.024 (9)
C140.149 (5)0.297 (10)0.154 (5)0.058 (6)0.089 (5)0.026 (6)
Geometric parameters (Å, º) top
Cl1—C21.728 (3)C6—H60.9300
Cl2—C31.723 (3)C7—C91.435 (3)
O1—H1O0.823 (10)C10—C111.441 (5)
O1—H2O0.823 (10)C10—H10A0.9700
O2—C101.427 (4)C10—H10B0.9700
O2—H1O20.813 (10)C11—C121.510 (5)
N1—C71.300 (3)C11—H11A0.9700
N1—N21.349 (3)C11—H11B0.9700
N2—C81.338 (3)C12—C13A1.405 (8)
N3—C81.342 (3)C12—C13B1.424 (8)
N3—H1N30.869 (10)C12—H12A0.9700
N3—H2N30.875 (10)C12—H12B0.9700
N4—C91.329 (3)C12—H12C0.9700
N4—C81.345 (3)C12—H12D0.9700
N5—C91.333 (3)C13A—C141.565 (7)
N5—H1N50.864 (10)C13A—H13A0.9700
N5—H2N50.870 (10)C13A—H13B0.9700
C1—C61.385 (4)C13B—C141.544 (9)
C1—C21.400 (4)C13B—H13C0.9700
C1—C71.489 (3)C13B—H13D0.9700
C2—C31.380 (4)C14—H14A0.9600
C3—C41.375 (4)C14—H14B0.9600
C4—C51.366 (5)C14—H14C0.9600
C4—H40.9300C14—H14D0.9600
C5—C61.373 (4)C14—H14E0.9600
C5—H50.9300C14—H14F0.9600
H1O—O1—H2O97 (4)H10A—C10—H10B107.9
C10—O2—H1O2116 (3)C10—C11—C12114.1 (5)
C7—N1—N2121.04 (19)C10—C11—H11A108.7
C8—N2—N1117.05 (18)C12—C11—H11A108.7
C8—N3—H1N3128 (2)C10—C11—H11B108.7
C8—N3—H2N3123 (2)C12—C11—H11B108.7
H1N3—N3—H2N3105 (3)H11A—C11—H11B107.6
C9—N4—C8115.91 (19)C13A—C12—C11120.1 (6)
C9—N5—H1N5122 (2)C13B—C12—C11125.3 (7)
C9—N5—H2N5120 (2)C13A—C12—H12A107.3
H1N5—N5—H2N5118 (3)C11—C12—H12A107.3
C6—C1—C2117.8 (2)C13A—C12—H12B107.3
C6—C1—C7120.4 (2)C11—C12—H12B107.3
C2—C1—C7121.7 (2)H12A—C12—H12B106.9
C3—C2—C1120.7 (2)C13B—C12—H12C106.0
C3—C2—Cl1120.0 (2)C11—C12—H12C106.0
C1—C2—Cl1119.26 (19)C13B—C12—H12D106.0
C4—C3—C2120.0 (3)C11—C12—H12D106.0
C4—C3—Cl2119.1 (2)H12C—C12—H12D106.3
C2—C3—Cl2120.9 (2)C12—C13A—C14110.3 (6)
C5—C4—C3119.8 (3)C12—C13A—H13A109.6
C5—C4—H4120.1C14—C13A—H13A109.6
C3—C4—H4120.1C12—C13A—H13B109.6
C4—C5—C6120.7 (3)C14—C13A—H13B109.6
C4—C5—H5119.7H13A—C13A—H13B108.1
C6—C5—H5119.7C12—C13B—C14110.5 (7)
C5—C6—C1121.0 (3)C12—C13B—H13C109.5
C5—C6—H6119.5C14—C13B—H13C109.5
C1—C6—H6119.5C12—C13B—H13D109.5
N1—C7—C9120.0 (2)C14—C13B—H13D109.5
N1—C7—C1116.9 (2)H13C—C13B—H13D108.1
C9—C7—C1123.13 (19)C13A—C14—H14A109.5
N2—C8—N3116.85 (19)C13A—C14—H14B109.5
N2—C8—N4126.0 (2)H14A—C14—H14B109.5
N3—C8—N4117.1 (2)C13A—C14—H14C109.5
N4—C9—N5118.4 (2)H14A—C14—H14C109.5
N4—C9—C7119.71 (19)H14B—C14—H14C109.5
N5—C9—C7121.9 (2)C13B—C14—H14D109.5
O2—C10—C11111.9 (4)C13B—C14—H14E109.5
O2—C10—H10A109.2H14D—C14—H14E109.5
C11—C10—H10A109.2C13B—C14—H14F109.5
O2—C10—H10B109.2H14D—C14—H14F109.5
C11—C10—H10B109.2H14E—C14—H14F109.5
C7—N1—N2—C81.6 (4)C2—C1—C7—N1108.2 (3)
C6—C1—C2—C30.1 (4)C6—C1—C7—C9109.7 (3)
C7—C1—C2—C3176.7 (2)C2—C1—C7—C973.8 (3)
C6—C1—C2—Cl1179.1 (2)N1—N2—C8—N3176.4 (2)
C7—C1—C2—Cl12.5 (3)N1—N2—C8—N44.6 (4)
C1—C2—C3—C40.4 (5)C9—N4—C8—N22.1 (4)
Cl1—C2—C3—C4178.8 (3)C9—N4—C8—N3178.9 (2)
C1—C2—C3—Cl2179.6 (2)C8—N4—C9—N5175.9 (2)
Cl1—C2—C3—Cl21.2 (4)C8—N4—C9—C73.0 (3)
C2—C3—C4—C50.0 (5)N1—C7—C9—N45.8 (4)
Cl2—C3—C4—C5180.0 (3)C1—C7—C9—N4176.2 (2)
C3—C4—C5—C60.6 (6)N1—C7—C9—N5173.1 (3)
C4—C5—C6—C10.9 (5)C1—C7—C9—N54.9 (4)
C2—C1—C6—C50.5 (4)O2—C10—C11—C12177.1 (5)
C7—C1—C6—C5176.1 (3)C10—C11—C12—C13A88.6 (9)
N2—N1—C7—C93.3 (4)C10—C11—C12—C13B154.1 (10)
N2—N1—C7—C1178.6 (2)C11—C12—C13A—C14159.9 (6)
C6—C1—C7—N168.3 (3)C11—C12—C13B—C14151.2 (9)
(LAM_benzonitrile_solvate) top
Crystal data top
C9H7Cl2N5·2(C7H5N)Z = 2
Mr = 462.34F(000) = 476
Triclinic, P1Dx = 1.330 Mg m3
a = 10.3096 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.6257 (6) ÅCell parameters from 3971 reflections
c = 12.0489 (11) Åθ = 3.9–67.2°
α = 74.280 (6)°µ = 2.73 mm1
β = 75.318 (7)°T = 296 K
γ = 67.161 (6)°Prism, colourless
V = 1154.46 (17) Å30.55 × 0.35 × 0.25 mm
Data collection top
Goniometer Xcalibur, detector: Sapphire3 (Gemini Cu)
diffractometer
3095 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.031
ω scansθmax = 67.3°, θmin = 3.9°
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.34d. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1212
Tmin = 0.697, Tmax = 1.000k = 127
10040 measured reflectionsl = 1414
4117 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0821P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.19 e Å3
4117 reflectionsΔρmin = 0.20 e Å3
302 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.0055 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14641 (5)0.22313 (6)0.36178 (4)0.07545 (19)
Cl20.39049 (8)0.19536 (7)0.48741 (5)0.0961 (2)
N10.23463 (15)0.05239 (14)0.09448 (13)0.0564 (4)
N20.13168 (17)0.06030 (14)0.03966 (14)0.0604 (4)
N30.0689 (2)0.19269 (16)0.04074 (18)0.0764 (5)
H1N30.1370 (19)0.2705 (16)0.056 (2)0.092*
H2N30.077 (3)0.1184 (17)0.049 (2)0.092*
N40.03749 (15)0.30734 (13)0.02270 (13)0.0559 (4)
N50.15069 (18)0.41571 (14)0.08498 (16)0.0649 (4)
H1N50.093 (2)0.4959 (14)0.0546 (18)0.078*
H2N50.2253 (16)0.411 (2)0.1072 (19)0.078*
N6A1.0965 (3)0.0913 (4)0.7094 (3)0.1308 (10)
N6B0.6494 (3)0.4551 (3)0.8832 (3)0.1294 (10)
C10.35319 (18)0.15171 (15)0.17683 (15)0.0506 (4)
C20.32150 (18)0.17803 (16)0.29007 (15)0.0539 (4)
C30.4294 (2)0.16664 (18)0.34551 (17)0.0623 (4)
C40.5680 (2)0.1308 (2)0.2899 (2)0.0718 (5)
H40.63970.12350.32750.086*
C50.6013 (2)0.1056 (2)0.1780 (2)0.0729 (5)
H50.69550.08210.13990.087*
C60.49533 (19)0.11497 (18)0.12244 (17)0.0617 (4)
H60.51930.09640.04730.074*
C70.23953 (17)0.16526 (16)0.11505 (14)0.0502 (4)
C90.14097 (18)0.29907 (16)0.07353 (15)0.0513 (4)
C80.03580 (19)0.18599 (17)0.00970 (16)0.0556 (4)
C10A0.9217 (3)0.1513 (3)0.6370 (2)0.0904 (7)
C11A0.9394 (5)0.2669 (5)0.6469 (3)0.1335 (13)
H11A1.01340.25950.68190.160*
C12A0.8455 (7)0.3983 (5)0.6040 (4)0.159 (2)
H12A0.85610.47880.61090.191*
C13A0.7388 (6)0.4069 (4)0.5521 (4)0.1545 (18)
H13A0.67680.49390.52320.185*
C14A0.7216 (5)0.2919 (4)0.5420 (3)0.1416 (13)
H14A0.64840.29880.50620.170*
C15A0.8134 (4)0.1636 (3)0.5854 (3)0.1113 (9)
H15A0.80110.08370.57930.134*
C16A1.0186 (3)0.0153 (4)0.6786 (3)0.0993 (8)
C10B0.4455 (2)0.4229 (2)0.82049 (18)0.0687 (5)
C11B0.3246 (2)0.5355 (2)0.7988 (2)0.0804 (6)
H11B0.31630.62270.80790.096*
C12B0.2167 (3)0.5193 (3)0.7640 (2)0.0980 (8)
H12B0.13540.59560.74850.118*
C13B0.2281 (4)0.3930 (4)0.7520 (3)0.1090 (9)
H13B0.15390.38270.72880.131*
C14B0.3468 (4)0.2800 (3)0.7735 (2)0.1059 (9)
H14B0.35260.19330.76520.127*
C15B0.4588 (3)0.2934 (2)0.8075 (2)0.0848 (6)
H15B0.54070.21700.82130.102*
C16B0.5587 (3)0.4413 (3)0.8558 (2)0.0902 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0621 (3)0.0903 (4)0.0702 (3)0.0219 (2)0.0005 (2)0.0268 (2)
Cl20.1155 (5)0.1015 (4)0.0767 (4)0.0210 (4)0.0381 (3)0.0297 (3)
N10.0541 (8)0.0461 (7)0.0699 (9)0.0101 (6)0.0157 (7)0.0186 (6)
N20.0617 (9)0.0471 (7)0.0789 (10)0.0125 (7)0.0222 (7)0.0217 (7)
N30.0831 (12)0.0509 (8)0.1113 (14)0.0178 (8)0.0518 (11)0.0159 (9)
N40.0587 (8)0.0424 (7)0.0709 (9)0.0151 (6)0.0232 (7)0.0100 (6)
N50.0677 (10)0.0422 (7)0.0944 (12)0.0163 (7)0.0399 (9)0.0075 (7)
N6A0.0768 (16)0.160 (3)0.146 (3)0.0329 (17)0.0240 (16)0.022 (2)
N6B0.0863 (16)0.169 (3)0.167 (3)0.0493 (17)0.0300 (17)0.071 (2)
C10.0505 (9)0.0401 (7)0.0599 (9)0.0111 (7)0.0132 (7)0.0102 (6)
C20.0539 (10)0.0460 (8)0.0602 (10)0.0132 (7)0.0121 (8)0.0111 (7)
C30.0683 (12)0.0521 (9)0.0671 (11)0.0131 (8)0.0242 (9)0.0116 (8)
C40.0627 (12)0.0654 (11)0.0934 (15)0.0162 (9)0.0352 (11)0.0131 (10)
C50.0463 (10)0.0713 (11)0.0942 (15)0.0109 (9)0.0143 (10)0.0167 (10)
C60.0535 (10)0.0576 (9)0.0686 (11)0.0099 (8)0.0093 (8)0.0183 (8)
C70.0492 (9)0.0440 (8)0.0560 (9)0.0117 (7)0.0093 (7)0.0135 (6)
C90.0514 (9)0.0439 (8)0.0604 (9)0.0144 (7)0.0140 (7)0.0114 (7)
C80.0604 (10)0.0481 (9)0.0632 (10)0.0184 (8)0.0157 (8)0.0140 (7)
C10A0.0945 (18)0.1105 (19)0.0731 (14)0.0500 (16)0.0062 (13)0.0255 (13)
C11A0.167 (4)0.147 (3)0.119 (3)0.089 (3)0.005 (2)0.050 (2)
C12A0.245 (6)0.126 (3)0.132 (3)0.103 (4)0.023 (3)0.055 (3)
C13A0.216 (5)0.102 (3)0.109 (3)0.043 (3)0.013 (3)0.017 (2)
C14A0.166 (4)0.117 (3)0.133 (3)0.040 (3)0.049 (3)0.001 (2)
C15A0.122 (2)0.0953 (19)0.123 (2)0.0413 (17)0.0359 (19)0.0117 (16)
C16A0.0736 (16)0.131 (2)0.0984 (19)0.0435 (17)0.0052 (14)0.0268 (17)
C10B0.0647 (12)0.0756 (12)0.0711 (12)0.0268 (10)0.0102 (9)0.0198 (9)
C11B0.0741 (14)0.0779 (13)0.0913 (15)0.0245 (11)0.0150 (11)0.0211 (11)
C12B0.0726 (15)0.121 (2)0.0935 (18)0.0253 (15)0.0228 (13)0.0133 (15)
C13B0.116 (2)0.149 (3)0.0961 (19)0.078 (2)0.0349 (17)0.0134 (18)
C14B0.160 (3)0.1021 (19)0.0898 (17)0.079 (2)0.0271 (18)0.0156 (14)
C15B0.1027 (18)0.0730 (13)0.0783 (14)0.0249 (12)0.0237 (13)0.0140 (10)
C16B0.0704 (14)0.1103 (18)0.1020 (18)0.0315 (13)0.0146 (13)0.0390 (14)
Geometric parameters (Å, º) top
Cl1—C21.7311 (18)C7—C91.434 (2)
Cl2—C31.737 (2)C10A—C11A1.350 (5)
N1—C71.310 (2)C10A—C15A1.358 (4)
N1—N21.351 (2)C10A—C16A1.442 (5)
N2—C81.336 (2)C11A—C12A1.403 (7)
N3—C81.338 (2)C11A—H11A0.9300
N3—H1N30.862 (10)C12A—C13A1.359 (7)
N3—H2N30.858 (10)C12A—H12A0.9300
N4—C91.323 (2)C13A—C14A1.341 (6)
N4—C81.348 (2)C13A—H13A0.9300
N5—C91.327 (2)C14A—C15A1.375 (5)
N5—H1N50.873 (10)C14A—H14A0.9300
N5—H2N50.854 (10)C15A—H15A0.9300
N6A—C16A1.133 (4)C10B—C11B1.375 (3)
N6B—C16B1.138 (3)C10B—C15B1.378 (3)
C1—C61.392 (2)C10B—C16B1.433 (3)
C1—C21.399 (2)C11B—C12B1.367 (4)
C1—C71.484 (2)C11B—H11B0.9300
C2—C31.388 (3)C12B—C13B1.345 (4)
C3—C41.366 (3)C12B—H12B0.9300
C4—C51.377 (3)C13B—C14B1.363 (5)
C4—H40.9300C13B—H13B0.9300
C5—C61.379 (3)C14B—C15B1.387 (4)
C5—H50.9300C14B—H14B0.9300
C6—H60.9300C15B—H15B0.9300
C7—N1—N2120.29 (13)C11A—C10A—C16A120.4 (3)
C8—N2—N1117.46 (13)C15A—C10A—C16A120.0 (3)
C8—N3—H1N3120.5 (17)C10A—C11A—C12A119.5 (4)
C8—N3—H2N3120.8 (17)C10A—C11A—H11A120.2
H1N3—N3—H2N3118 (2)C12A—C11A—H11A120.2
C9—N4—C8116.30 (14)C13A—C12A—C11A119.3 (4)
C9—N5—H1N5119.5 (15)C13A—C12A—H12A120.3
C9—N5—H2N5118.2 (16)C11A—C12A—H12A120.3
H1N5—N5—H2N5121 (2)C14A—C13A—C12A121.1 (5)
C6—C1—C2117.76 (16)C14A—C13A—H13A119.4
C6—C1—C7120.72 (15)C12A—C13A—H13A119.4
C2—C1—C7121.51 (15)C13A—C14A—C15A119.1 (5)
C3—C2—C1120.50 (16)C13A—C14A—H14A120.4
C3—C2—Cl1119.98 (14)C15A—C14A—H14A120.4
C1—C2—Cl1119.51 (13)C10A—C15A—C14A121.3 (3)
C4—C3—C2120.50 (18)C10A—C15A—H15A119.3
C4—C3—Cl2119.01 (15)C14A—C15A—H15A119.3
C2—C3—Cl2120.48 (15)N6A—C16A—C10A178.7 (3)
C3—C4—C5119.90 (18)C11B—C10B—C15B120.5 (2)
C3—C4—H4120.1C11B—C10B—C16B119.6 (2)
C5—C4—H4120.1C15B—C10B—C16B120.0 (2)
C4—C5—C6120.19 (18)C12B—C11B—C10B120.0 (2)
C4—C5—H5119.9C12B—C11B—H11B120.0
C6—C5—H5119.9C10B—C11B—H11B120.0
C5—C6—C1121.15 (18)C13B—C12B—C11B120.1 (3)
C5—C6—H6119.4C13B—C12B—H12B120.0
C1—C6—H6119.4C11B—C12B—H12B120.0
N1—C7—C9120.29 (15)C12B—C13B—C14B120.9 (3)
N1—C7—C1118.55 (14)C12B—C13B—H13B119.5
C9—C7—C1121.09 (14)C14B—C13B—H13B119.5
N4—C9—N5118.86 (14)C13B—C14B—C15B120.4 (2)
N4—C9—C7119.61 (14)C13B—C14B—H14B119.8
N5—C9—C7121.53 (15)C15B—C14B—H14B119.8
N2—C8—N3117.26 (15)C10B—C15B—C14B118.2 (3)
N2—C8—N4125.76 (16)C10B—C15B—H15B120.9
N3—C8—N4116.95 (15)C14B—C15B—H15B120.9
C11A—C10A—C15A119.6 (3)N6B—C16B—C10B179.4 (3)
C7—N1—N2—C81.0 (2)C1—C7—C9—N4177.45 (15)
C6—C1—C2—C30.4 (2)N1—C7—C9—N5174.57 (17)
C7—C1—C2—C3179.06 (14)C1—C7—C9—N52.4 (3)
C6—C1—C2—Cl1179.63 (12)N1—N2—C8—N3177.65 (17)
C7—C1—C2—Cl11.7 (2)N1—N2—C8—N44.4 (3)
C1—C2—C3—C40.6 (3)C9—N4—C8—N22.6 (3)
Cl1—C2—C3—C4179.85 (14)C9—N4—C8—N3179.49 (17)
C1—C2—C3—Cl2178.49 (12)C15A—C10A—C11A—C12A0.1 (5)
Cl1—C2—C3—Cl20.8 (2)C16A—C10A—C11A—C12A178.9 (3)
C2—C3—C4—C50.1 (3)C10A—C11A—C12A—C13A0.6 (6)
Cl2—C3—C4—C5179.03 (15)C11A—C12A—C13A—C14A0.4 (7)
C3—C4—C5—C60.7 (3)C12A—C13A—C14A—C15A0.2 (7)
C4—C5—C6—C10.9 (3)C11A—C10A—C15A—C14A0.5 (5)
C2—C1—C6—C50.3 (3)C16A—C10A—C15A—C14A178.3 (3)
C7—C1—C6—C5178.34 (16)C13A—C14A—C15A—C10A0.7 (6)
N2—N1—C7—C93.7 (2)C15B—C10B—C11B—C12B0.1 (4)
N2—N1—C7—C1179.21 (15)C16B—C10B—C11B—C12B179.4 (2)
C6—C1—C7—N169.5 (2)C10B—C11B—C12B—C13B0.7 (4)
C2—C1—C7—N1111.89 (18)C11B—C12B—C13B—C14B0.4 (5)
C6—C1—C7—C9107.59 (19)C12B—C13B—C14B—C15B0.4 (5)
C2—C1—C7—C971.0 (2)C11B—C10B—C15B—C14B0.6 (4)
C8—N4—C9—N5177.72 (17)C16B—C10B—C15B—C14B179.8 (2)
C8—N4—C9—C72.4 (2)C13B—C14B—C15B—C10B0.9 (4)
N1—C7—C9—N45.5 (3)
(LAM_acetonitrile_solvate) top
Crystal data top
C9H7Cl2N5·C2H3NZ = 2
Mr = 297.15F(000) = 304
Triclinic, P1Dx = 1.425 Mg m3
a = 7.9855 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.6004 (5) ÅCell parameters from 2878 reflections
c = 10.9109 (7) Åθ = 4.3–72.2°
α = 69.598 (6)°µ = 4.19 mm1
β = 82.227 (5)°T = 296 K
γ = 82.015 (5)°Block prism, colourless
V = 692.48 (7) Å30.40 × 0.40 × 0.40 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
2430 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.020
ω scansθmax = 70.0°, θmin = 4.3°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.36.21. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 69
Tmin = 0.210, Tmax = 1.000k = 1010
5383 measured reflectionsl = 1312
2633 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.1224P)2 + 0.2081P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2633 reflectionsΔρmax = 0.73 e Å3
185 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46106 (8)0.33991 (8)0.73313 (7)0.0666 (3)
Cl20.24043 (8)0.04639 (10)0.77877 (7)0.0711 (3)
N10.8385 (3)0.2641 (3)0.92386 (19)0.0517 (5)
N20.9300 (3)0.3850 (3)0.92135 (19)0.0530 (5)
N31.0867 (3)0.6000 (3)0.8051 (2)0.0550 (5)
N40.9872 (2)0.4587 (2)0.68806 (17)0.0439 (4)
N50.8811 (3)0.3112 (3)0.5812 (2)0.0578 (6)
N60.3554 (6)0.8047 (7)0.5603 (5)0.1205 (14)
C10.7137 (3)0.1019 (3)0.8297 (2)0.0426 (5)
C20.5468 (3)0.1355 (3)0.7964 (2)0.0454 (5)
C30.4480 (3)0.0056 (3)0.8184 (2)0.0487 (5)
C40.5145 (3)0.1578 (3)0.8738 (2)0.0540 (6)
H40.44790.24440.88910.065*
C50.6790 (3)0.1919 (3)0.9062 (3)0.0544 (6)
H50.72390.30200.94270.065*
C60.7794 (3)0.0632 (3)0.8849 (2)0.0490 (5)
H60.89060.08760.90750.059*
C70.8183 (3)0.2396 (3)0.8155 (2)0.0426 (5)
C80.9993 (3)0.4774 (3)0.8040 (2)0.0430 (5)
C90.8963 (3)0.3381 (3)0.6926 (2)0.0423 (5)
C100.4992 (7)0.7841 (5)0.5660 (4)0.0895 (11)
C110.6768 (6)0.7575 (6)0.5731 (4)0.1052 (14)
H11A0.70140.67820.65720.158*
H11B0.71980.86100.56170.158*
H11C0.72970.71530.50500.158*
H2N31.093 (7)0.625 (7)0.874 (3)0.126*
H2N50.927 (7)0.375 (5)0.509 (3)0.126*
H1N31.135 (6)0.664 (5)0.734 (3)0.126*
H1N50.823 (6)0.236 (5)0.579 (6)0.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0577 (4)0.0486 (4)0.0803 (5)0.0018 (3)0.0101 (3)0.0066 (3)
Cl20.0470 (4)0.0837 (5)0.0713 (5)0.0171 (3)0.0085 (3)0.0069 (4)
N10.0617 (12)0.0522 (11)0.0400 (9)0.0180 (9)0.0017 (8)0.0118 (8)
N20.0660 (13)0.0568 (11)0.0383 (9)0.0206 (10)0.0005 (8)0.0146 (8)
N30.0670 (13)0.0535 (11)0.0476 (11)0.0209 (10)0.0014 (9)0.0175 (9)
N40.0481 (10)0.0440 (9)0.0371 (9)0.0100 (8)0.0002 (7)0.0097 (7)
N50.0734 (14)0.0654 (13)0.0386 (10)0.0305 (11)0.0045 (9)0.0168 (9)
N60.100 (3)0.145 (4)0.142 (4)0.033 (3)0.009 (3)0.073 (3)
C10.0450 (11)0.0432 (11)0.0363 (10)0.0081 (8)0.0037 (8)0.0103 (8)
C20.0467 (12)0.0439 (11)0.0391 (10)0.0042 (9)0.0011 (8)0.0078 (8)
C30.0429 (11)0.0565 (13)0.0423 (11)0.0117 (9)0.0028 (9)0.0110 (10)
C40.0568 (14)0.0500 (13)0.0523 (13)0.0184 (10)0.0072 (10)0.0133 (10)
C50.0587 (14)0.0398 (11)0.0563 (13)0.0060 (10)0.0028 (11)0.0081 (10)
C60.0465 (12)0.0461 (12)0.0481 (12)0.0053 (9)0.0005 (9)0.0096 (9)
C70.0423 (11)0.0420 (10)0.0395 (10)0.0062 (8)0.0014 (8)0.0097 (8)
C80.0444 (11)0.0428 (11)0.0397 (10)0.0050 (8)0.0023 (8)0.0117 (8)
C90.0439 (11)0.0432 (10)0.0372 (10)0.0061 (8)0.0017 (8)0.0105 (8)
C100.113 (3)0.073 (2)0.080 (2)0.011 (2)0.007 (2)0.0221 (17)
C110.093 (3)0.114 (3)0.085 (3)0.027 (2)0.014 (2)0.015 (2)
Geometric parameters (Å, º) top
Cl1—C21.727 (2)C1—C21.394 (3)
Cl2—C31.727 (3)C1—C71.495 (3)
N1—C71.305 (3)C2—C31.392 (3)
N1—N21.342 (3)C3—C41.381 (4)
N2—C81.341 (3)C4—C51.373 (4)
N3—C81.346 (3)C4—H40.9300
N3—H2N30.863 (10)C5—C61.392 (3)
N3—H1N30.858 (10)C5—H50.9300
N4—C91.330 (3)C6—H60.9300
N4—C81.347 (3)C7—C91.426 (3)
N5—C91.338 (3)C10—C111.412 (7)
N5—H2N50.857 (10)C11—H11A0.9600
N5—H1N50.858 (10)C11—H11B0.9600
N6—C101.145 (6)C11—H11C0.9600
C1—C61.392 (3)
C7—N1—N2120.63 (19)C4—C5—H5119.7
C8—N2—N1117.33 (19)C6—C5—H5119.7
C8—N3—H2N3124 (4)C1—C6—C5120.1 (2)
C8—N3—H1N3121 (4)C1—C6—H6119.9
H2N3—N3—H1N3115 (5)C5—C6—H6119.9
C9—N4—C8115.90 (18)N1—C7—C9120.6 (2)
C9—N5—H2N5118 (3)N1—C7—C1116.15 (19)
C9—N5—H1N5123 (4)C9—C7—C1123.20 (19)
H2N5—N5—H1N5119 (5)N2—C8—N3115.6 (2)
C6—C1—C2118.9 (2)N2—C8—N4125.9 (2)
C6—C1—C7119.8 (2)N3—C8—N4118.6 (2)
C2—C1—C7121.2 (2)N4—C9—N5119.00 (19)
C3—C2—C1120.3 (2)N4—C9—C7119.61 (19)
C3—C2—Cl1120.20 (18)N5—C9—C7121.4 (2)
C1—C2—Cl1119.48 (17)N6—C10—C11179.6 (5)
C4—C3—C2120.2 (2)C10—C11—H11A109.5
C4—C3—Cl2119.26 (19)C10—C11—H11B109.5
C2—C3—Cl2120.53 (19)H11A—C11—H11B109.5
C5—C4—C3119.9 (2)C10—C11—H11C109.5
C5—C4—H4120.1H11A—C11—H11C109.5
C3—C4—H4120.1H11B—C11—H11C109.5
C4—C5—C6120.6 (2)
C7—N1—N2—C80.3 (4)N2—N1—C7—C1179.9 (2)
C6—C1—C2—C30.1 (3)C6—C1—C7—N172.2 (3)
C7—C1—C2—C3175.77 (19)C2—C1—C7—N1103.7 (3)
C6—C1—C2—Cl1177.79 (16)C6—C1—C7—C9106.4 (3)
C7—C1—C2—Cl11.9 (3)C2—C1—C7—C977.8 (3)
C1—C2—C3—C40.2 (3)N1—N2—C8—N3178.4 (2)
Cl1—C2—C3—C4177.46 (18)N1—N2—C8—N40.9 (4)
C1—C2—C3—Cl2179.41 (16)C9—N4—C8—N20.7 (4)
Cl1—C2—C3—Cl21.7 (3)C9—N4—C8—N3178.6 (2)
C2—C3—C4—C50.6 (4)C8—N4—C9—N5179.1 (2)
Cl2—C3—C4—C5179.77 (19)C8—N4—C9—C70.5 (3)
C3—C4—C5—C60.6 (4)N1—C7—C9—N41.7 (3)
C2—C1—C6—C50.1 (3)C1—C7—C9—N4179.8 (2)
C7—C1—C6—C5175.9 (2)N1—C7—C9—N5178.0 (2)
C4—C5—C6—C10.3 (4)C1—C7—C9—N50.5 (4)
N2—N1—C7—C91.5 (4)
(LAM_DMSO_solvate) top
Crystal data top
C9H7Cl2N5·C2H6OSF(000) = 688
Mr = 334.22Dx = 1.440 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.6626 (3) ÅCell parameters from 3373 reflections
b = 7.3529 (2) Åθ = 4.1–67.2°
c = 19.6714 (5) ŵ = 5.09 mm1
β = 92.096 (2)°T = 296 K
V = 1541.23 (7) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.25 mm
Data collection top
Goniometer Xcalibur, detector: Sapphire3 (Gemini Cu)
diffractometer
2135 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.026
ω scansθmax = 67.4°, θmin = 4.5°
Absorption correction: multi-scan
CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.34d. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 129
Tmin = 0.585, Tmax = 1.000k = 88
7391 measured reflectionsl = 2123
2747 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0845P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
2747 reflectionsΔρmax = 0.28 e Å3
211 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.95196 (7)0.71206 (8)0.21238 (3)0.0723 (2)
Cl21.01288 (7)1.04096 (9)0.30952 (3)0.0769 (2)
N10.66814 (15)0.7751 (2)0.07757 (9)0.0526 (4)
N20.62188 (15)0.6423 (3)0.03726 (9)0.0547 (5)
N30.65635 (17)0.3996 (3)0.03171 (10)0.0616 (5)
H3NA0.5764 (10)0.382 (4)0.0325 (14)0.074*
H3NB0.707 (2)0.325 (3)0.0507 (13)0.074*
N40.82971 (15)0.5544 (2)0.01022 (9)0.0521 (4)
N50.99699 (18)0.7244 (3)0.04827 (13)0.0738 (7)
H5NA1.031 (3)0.810 (3)0.0719 (13)0.089*
H5NB1.045 (2)0.636 (3)0.0353 (15)0.089*
C100.5781 (3)0.0654 (5)0.11071 (19)0.0934 (10)
H10A0.52080.13260.13990.140*0.69
H10B0.60380.13960.07260.140*0.69
H10C0.53740.04210.09480.140*0.69
H10D0.53950.17400.09420.140*0.31
H10E0.54490.03840.08780.140*0.31
H10F0.56070.05430.15880.140*0.31
S1A0.70995 (10)0.00363 (13)0.15605 (5)0.0733 (3)0.69
O1A0.7922 (10)0.1041 (11)0.1004 (4)0.140 (3)0.69
S1B0.7388 (2)0.0767 (3)0.09500 (12)0.0769 (6)0.31
O1B0.7842 (19)0.1104 (18)0.1252 (6)0.079 (3)0.31
C110.7870 (3)0.2207 (5)0.1574 (2)0.1148 (14)
H11A0.74440.29840.18990.172*0.69
H11B0.87250.20460.16990.172*0.69
H11C0.78530.27510.11310.172*0.69
H11D0.76540.34340.14600.172*0.31
H11E0.74630.18810.20000.172*0.31
H11F0.87630.21110.16110.172*0.31
C10.82694 (18)0.9540 (3)0.13121 (10)0.0472 (5)
C20.89866 (18)0.9275 (3)0.19127 (10)0.0478 (5)
C30.92277 (19)1.0719 (3)0.23544 (11)0.0509 (5)
C40.8755 (2)1.2420 (3)0.22109 (13)0.0598 (6)
H40.89121.33780.25110.072*
C50.8049 (3)1.2696 (3)0.16214 (14)0.0681 (6)
H50.77271.38450.15230.082*
C60.7815 (2)1.1278 (3)0.11748 (12)0.0594 (5)
H60.73451.14890.07750.071*
C70.78953 (17)0.8012 (3)0.08515 (10)0.0472 (5)
C80.70424 (18)0.5354 (3)0.00655 (10)0.0474 (5)
C90.87470 (18)0.6919 (3)0.04823 (11)0.0516 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0956 (5)0.0482 (3)0.0714 (4)0.0105 (3)0.0221 (3)0.0054 (3)
Cl20.1000 (5)0.0720 (4)0.0567 (3)0.0047 (3)0.0250 (3)0.0133 (3)
N10.0418 (9)0.0611 (11)0.0549 (10)0.0042 (7)0.0002 (7)0.0130 (8)
N20.0394 (8)0.0669 (11)0.0572 (10)0.0069 (8)0.0036 (7)0.0157 (9)
N30.0425 (9)0.0737 (13)0.0680 (12)0.0073 (9)0.0068 (8)0.0270 (10)
N40.0393 (8)0.0627 (11)0.0541 (10)0.0054 (7)0.0025 (7)0.0172 (8)
N50.0404 (9)0.0874 (15)0.0938 (16)0.0113 (9)0.0048 (9)0.0484 (13)
C100.0674 (16)0.090 (2)0.123 (3)0.0078 (15)0.0034 (17)0.0176 (19)
S1A0.0770 (6)0.0683 (6)0.0747 (6)0.0200 (4)0.0050 (5)0.0100 (5)
O1A0.068 (3)0.149 (5)0.203 (8)0.025 (3)0.010 (5)0.125 (5)
S1B0.0691 (12)0.0813 (14)0.0801 (14)0.0066 (10)0.0001 (10)0.0020 (12)
O1B0.067 (5)0.091 (6)0.079 (5)0.035 (4)0.006 (4)0.038 (5)
C110.097 (2)0.100 (3)0.151 (4)0.0109 (19)0.046 (2)0.025 (2)
C10.0413 (9)0.0493 (11)0.0511 (11)0.0040 (8)0.0015 (8)0.0061 (9)
C20.0494 (10)0.0441 (10)0.0498 (11)0.0003 (8)0.0004 (8)0.0043 (9)
C30.0553 (11)0.0516 (12)0.0454 (10)0.0049 (9)0.0026 (9)0.0058 (9)
C40.0693 (14)0.0475 (11)0.0624 (13)0.0024 (10)0.0003 (11)0.0114 (10)
C50.0806 (16)0.0464 (12)0.0766 (16)0.0062 (11)0.0058 (13)0.0015 (11)
C60.0609 (13)0.0554 (13)0.0612 (13)0.0016 (10)0.0084 (10)0.0014 (11)
C70.0417 (10)0.0527 (11)0.0468 (10)0.0049 (8)0.0024 (8)0.0068 (9)
C80.0421 (10)0.0577 (12)0.0421 (10)0.0051 (9)0.0043 (8)0.0049 (9)
C90.0409 (10)0.0605 (12)0.0533 (11)0.0063 (9)0.0014 (8)0.0138 (10)
Geometric parameters (Å, º) top
Cl1—C21.728 (2)S1A—O1A1.589 (7)
Cl2—C31.731 (2)S1A—C111.795 (4)
N1—C71.312 (3)S1B—O1B1.581 (9)
N1—N21.341 (2)S1B—C111.714 (4)
N2—C81.339 (3)C11—H11A0.9600
N3—C81.340 (3)C11—H11B0.9600
N3—H3NA0.861 (10)C11—H11C0.9600
N3—H3NB0.865 (10)C11—H11D0.9600
N4—C91.336 (3)C11—H11E0.9600
N4—C81.345 (3)C11—H11F0.9600
N5—C91.326 (3)C1—C61.390 (3)
N5—H5NA0.858 (10)C1—C21.397 (3)
N5—H5NB0.867 (10)C1—C71.489 (3)
C10—S1B1.732 (3)C2—C31.390 (3)
C10—S1A1.752 (3)C3—C41.374 (3)
C10—H10A0.9600C4—C51.374 (4)
C10—H10B0.9600C4—H40.9300
C10—H10C0.9600C5—C61.380 (3)
C10—H10D0.9600C5—H50.9300
C10—H10E0.9600C6—H60.9300
C10—H10F0.9600C7—C91.430 (3)
C7—N1—N2120.92 (17)S1B—C11—H11D109.5
N1—N2—C8117.48 (16)S1B—C11—H11E109.5
C8—N3—H3NA118.5 (18)H11D—C11—H11E109.5
C8—N3—H3NB118.6 (19)S1B—C11—H11F109.5
H3NA—N3—H3NB123 (3)H11D—C11—H11F109.5
C9—N4—C8116.44 (17)H11E—C11—H11F109.5
C9—N5—H5NA122 (2)C6—C1—C2117.97 (19)
C9—N5—H5NB117 (2)C6—C1—C7119.47 (19)
H5NA—N5—H5NB118 (3)C2—C1—C7122.37 (19)
S1A—C10—H10A109.5C3—C2—C1120.3 (2)
S1A—C10—H10B109.5C3—C2—Cl1119.89 (16)
H10A—C10—H10B109.5C1—C2—Cl1119.74 (16)
S1A—C10—H10C109.5C4—C3—C2120.6 (2)
H10A—C10—H10C109.5C4—C3—Cl2118.74 (17)
H10B—C10—H10C109.5C2—C3—Cl2120.66 (17)
S1B—C10—H10D109.5C3—C4—C5119.5 (2)
S1B—C10—H10E109.5C3—C4—H4120.2
H10D—C10—H10E109.5C5—C4—H4120.2
S1B—C10—H10F109.5C4—C5—C6120.4 (2)
H10D—C10—H10F109.5C4—C5—H5119.8
H10E—C10—H10F109.5C6—C5—H5119.8
O1A—S1A—C10102.2 (4)C5—C6—C1121.1 (2)
O1A—S1A—C11102.2 (4)C5—C6—H6119.4
C10—S1A—C1198.80 (17)C1—C6—H6119.4
O1B—S1B—C1199.5 (7)N1—C7—C9120.17 (18)
O1B—S1B—C10101.9 (8)N1—C7—C1114.89 (17)
C11—S1B—C10102.9 (2)C9—C7—C1124.88 (17)
S1A—C11—H11A109.5N3—C8—N2116.62 (18)
S1A—C11—H11B109.5N3—C8—N4117.77 (18)
H11A—C11—H11B109.5N2—C8—N4125.61 (18)
S1A—C11—H11C109.5N5—C9—N4118.00 (19)
H11A—C11—H11C109.5N5—C9—C7122.79 (19)
H11B—C11—H11C109.5N4—C9—C7119.17 (17)
C7—N1—N2—C81.5 (3)N2—N1—C7—C1179.77 (18)
C6—C1—C2—C30.1 (3)C6—C1—C7—N157.0 (3)
C7—C1—C2—C3174.77 (18)C2—C1—C7—N1117.8 (2)
C6—C1—C2—Cl1177.36 (16)C6—C1—C7—C9120.2 (2)
C7—C1—C2—Cl12.5 (3)C2—C1—C7—C965.0 (3)
C1—C2—C3—C40.7 (3)N1—N2—C8—N3177.8 (2)
Cl1—C2—C3—C4176.59 (17)N1—N2—C8—N43.1 (3)
C1—C2—C3—Cl2179.32 (15)C9—N4—C8—N3179.4 (2)
Cl1—C2—C3—Cl23.4 (3)C9—N4—C8—N20.3 (3)
C2—C3—C4—C50.7 (3)C8—N4—C9—N5174.3 (2)
Cl2—C3—C4—C5179.30 (19)C8—N4—C9—C73.7 (3)
C3—C4—C5—C60.1 (4)N1—C7—C9—N5172.7 (2)
C4—C5—C6—C10.8 (4)C1—C7—C9—N54.4 (4)
C2—C1—C6—C50.9 (3)N1—C7—C9—N45.2 (3)
C7—C1—C6—C5174.2 (2)C1—C7—C9—N4177.8 (2)
N2—N1—C7—C92.4 (3)
(LAM_dioxane_solvate) top
Crystal data top
2(C9H7Cl2N5)·1.5(C4H8O2)Z = 2
Mr = 644.35F(000) = 664
Triclinic, P1Dx = 1.432 Mg m3
a = 10.2684 (12) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.7665 (6) ÅCell parameters from 2601 reflections
c = 14.9036 (12) Åθ = 4.4–72.8°
α = 71.197 (6)°µ = 3.99 mm1
β = 78.435 (8)°T = 296 K
γ = 74.957 (7)°Prism, colourless
V = 1493.9 (2) Å30.50 × 0.30 × 0.30 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
4048 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.048
ω scansθmax = 70.0°, θmin = 4.4°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.36.21. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1212
Tmin = 0.356, Tmax = 1.000k = 139
14176 measured reflectionsl = 1718
5657 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.1342P)2 + 0.1319P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5657 reflectionsΔρmax = 0.53 e Å3
394 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.04256 (12)0.86674 (17)0.88105 (9)0.1077 (5)
Cl2A0.10999 (17)1.05056 (11)0.67562 (8)0.1011 (5)
Cl1B0.49067 (10)0.23919 (11)0.58107 (7)0.0798 (3)
Cl2B0.47911 (12)0.44319 (11)0.37583 (8)0.0877 (4)
O1A0.7258 (3)0.8913 (2)0.08189 (18)0.0753 (8)
O1B0.8971 (3)0.4806 (3)0.57812 (19)0.0781 (8)
O2A0.7170 (5)0.6364 (3)0.2062 (3)0.1139 (13)
N1A0.2783 (4)0.5402 (3)0.9862 (2)0.0651 (8)
N2A0.2516 (4)0.4590 (3)1.0763 (2)0.0671 (8)
N3A0.1966 (4)0.4327 (3)1.2365 (2)0.0708 (9)
H13A0.182 (5)0.461 (4)1.287 (2)0.085*
H23A0.203 (5)0.3518 (18)1.236 (3)0.085*
N4A0.2278 (3)0.6403 (2)1.1413 (2)0.0610 (7)
N5A0.2593 (5)0.8450 (3)1.0423 (2)0.0769 (10)
H15A0.272 (5)0.898 (4)0.9856 (15)0.092*
H25A0.254 (5)0.878 (5)1.089 (2)0.092*
N1B0.7809 (3)0.0519 (2)0.64053 (19)0.0570 (7)
N2B0.7774 (3)0.1362 (2)0.73029 (19)0.0583 (7)
N3B0.7306 (4)0.1635 (3)0.8912 (2)0.0633 (8)
H13B0.740 (4)0.135 (4)0.937 (2)0.076*
H23B0.736 (4)0.2480 (14)0.902 (3)0.076*
N4B0.7453 (3)0.0481 (2)0.79442 (18)0.0529 (6)
N5B0.7608 (3)0.2564 (3)0.6932 (2)0.0603 (7)
H15B0.764 (5)0.278 (4)0.7432 (18)0.072*
H25B0.770 (4)0.306 (4)0.6349 (12)0.072*
C1A0.3089 (3)0.7506 (3)0.8732 (2)0.0549 (7)
C2A0.2065 (4)0.8489 (3)0.8264 (3)0.0610 (8)
C3A0.2378 (5)0.9289 (4)0.7344 (3)0.0674 (9)
C4A0.3673 (5)0.9126 (4)0.6888 (3)0.0793 (12)
H4A0.38740.96690.62730.095*
C5A0.4676 (5)0.8159 (5)0.7341 (3)0.0872 (13)
H5A0.55590.80400.70280.105*
C6A0.4392 (4)0.7345 (4)0.8269 (3)0.0756 (10)
H6A0.50840.66970.85720.091*
C7A0.2776 (4)0.6652 (3)0.9731 (2)0.0566 (7)
C8A0.2259 (4)0.5128 (3)1.1486 (2)0.0577 (8)
C9A0.2539 (4)0.7182 (3)1.0534 (2)0.0590 (8)
C1B0.7615 (3)0.1683 (3)0.5283 (2)0.0523 (7)
C2B0.6373 (4)0.2506 (3)0.5012 (2)0.0569 (8)
C3B0.6309 (4)0.3406 (3)0.4095 (2)0.0617 (8)
C4B0.7484 (4)0.3455 (3)0.3447 (3)0.0653 (9)
H4B0.74450.40430.28340.078*
C5B0.8700 (4)0.2646 (3)0.3702 (2)0.0648 (9)
H5B0.94800.26830.32600.078*
C6B0.8778 (4)0.1768 (3)0.4619 (2)0.0595 (8)
H6B0.96120.12350.47880.071*
C7B0.7661 (3)0.0778 (3)0.6269 (2)0.0513 (7)
C8B0.7523 (3)0.0819 (3)0.8028 (2)0.0514 (7)
C9B0.7573 (3)0.1283 (3)0.7064 (2)0.0511 (7)
C10B1.0356 (5)0.4299 (4)0.5889 (3)0.0820 (12)
H10A1.04510.34850.64180.098*
H10B1.07090.49500.60410.098*
C11B0.8833 (5)0.5998 (4)0.4994 (3)0.0843 (12)
H11A0.91490.66840.51300.101*
H11B0.78840.63330.48990.101*
C10A0.6043 (5)0.8612 (4)0.1410 (3)0.0903 (14)
H10C0.52630.91630.10930.108*
H10D0.59790.88190.20060.108*
C11A0.6028 (6)0.7183 (5)0.1609 (4)0.1021 (16)
H11C0.52000.69900.20190.123*
H11D0.60420.69870.10160.123*
C12A0.8358 (6)0.6631 (5)0.1453 (4)0.0981 (15)
H12A0.83720.64390.08580.118*
H12B0.91470.60580.17490.118*
C13A0.8413 (5)0.8063 (5)0.1254 (3)0.0891 (13)
H13C0.84320.82470.18470.107*
H13D0.92370.82420.08330.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0642 (7)0.1434 (12)0.0830 (7)0.0025 (6)0.0101 (5)0.0074 (7)
Cl2A0.1463 (12)0.0677 (6)0.0801 (7)0.0009 (6)0.0480 (7)0.0055 (5)
Cl1B0.0659 (6)0.0812 (6)0.0733 (6)0.0144 (4)0.0052 (4)0.0004 (5)
Cl2B0.0894 (7)0.0689 (6)0.0860 (7)0.0029 (5)0.0303 (6)0.0038 (5)
O1A0.103 (2)0.0487 (13)0.0634 (14)0.0233 (13)0.0033 (14)0.0005 (10)
O1B0.0822 (19)0.0580 (14)0.0736 (16)0.0170 (13)0.0054 (14)0.0013 (12)
O2A0.140 (3)0.0615 (18)0.107 (2)0.0310 (19)0.007 (2)0.0229 (17)
N1A0.093 (2)0.0423 (14)0.0599 (16)0.0141 (13)0.0143 (15)0.0117 (11)
N2A0.104 (2)0.0353 (12)0.0615 (16)0.0199 (14)0.0129 (16)0.0079 (11)
N3A0.111 (3)0.0380 (13)0.0604 (17)0.0233 (15)0.0049 (17)0.0071 (12)
N4A0.091 (2)0.0345 (12)0.0567 (15)0.0159 (12)0.0103 (14)0.0086 (10)
N5A0.141 (3)0.0398 (14)0.0524 (16)0.0328 (17)0.0137 (18)0.0049 (11)
N1B0.0775 (18)0.0387 (12)0.0530 (14)0.0143 (12)0.0109 (13)0.0074 (10)
N2B0.0853 (19)0.0319 (11)0.0553 (14)0.0165 (11)0.0105 (13)0.0050 (10)
N3B0.098 (2)0.0383 (13)0.0529 (14)0.0250 (14)0.0087 (14)0.0044 (11)
N4B0.0663 (16)0.0358 (12)0.0547 (14)0.0158 (11)0.0050 (12)0.0083 (10)
N5B0.092 (2)0.0351 (12)0.0519 (14)0.0197 (13)0.0083 (14)0.0050 (10)
C1A0.0616 (18)0.0427 (15)0.0614 (18)0.0119 (13)0.0142 (15)0.0117 (13)
C2A0.064 (2)0.0551 (18)0.0611 (19)0.0105 (15)0.0132 (16)0.0118 (14)
C3A0.093 (3)0.0525 (18)0.0606 (19)0.0208 (18)0.0157 (19)0.0136 (15)
C4A0.112 (4)0.064 (2)0.067 (2)0.040 (2)0.010 (2)0.0103 (17)
C5A0.080 (3)0.100 (3)0.084 (3)0.040 (3)0.014 (2)0.027 (2)
C6A0.068 (2)0.075 (2)0.084 (3)0.0182 (19)0.006 (2)0.022 (2)
C7A0.068 (2)0.0409 (15)0.0594 (18)0.0109 (13)0.0137 (15)0.0093 (13)
C8A0.074 (2)0.0379 (14)0.0575 (17)0.0147 (13)0.0092 (15)0.0053 (12)
C9A0.080 (2)0.0371 (14)0.0596 (18)0.0176 (14)0.0128 (16)0.0068 (12)
C1B0.0676 (19)0.0340 (13)0.0544 (16)0.0135 (12)0.0105 (14)0.0077 (11)
C2B0.070 (2)0.0460 (16)0.0545 (17)0.0195 (14)0.0086 (15)0.0074 (13)
C3B0.078 (2)0.0427 (15)0.0609 (19)0.0148 (15)0.0172 (17)0.0031 (13)
C4B0.092 (3)0.0424 (16)0.0562 (18)0.0207 (16)0.0127 (18)0.0001 (13)
C5B0.081 (2)0.0505 (17)0.0582 (19)0.0240 (16)0.0027 (17)0.0076 (14)
C6B0.070 (2)0.0440 (15)0.0599 (18)0.0138 (14)0.0043 (16)0.0106 (13)
C7B0.0573 (17)0.0374 (14)0.0559 (17)0.0124 (12)0.0080 (14)0.0064 (12)
C8B0.0611 (18)0.0389 (14)0.0522 (16)0.0171 (12)0.0083 (13)0.0046 (12)
C9B0.0600 (18)0.0331 (13)0.0553 (16)0.0125 (12)0.0077 (14)0.0036 (11)
C10B0.115 (4)0.057 (2)0.068 (2)0.024 (2)0.019 (2)0.0011 (17)
C11B0.088 (3)0.065 (2)0.083 (3)0.014 (2)0.006 (2)0.0026 (19)
C10A0.095 (3)0.068 (2)0.079 (3)0.009 (2)0.009 (2)0.000 (2)
C11A0.096 (3)0.075 (3)0.112 (4)0.034 (3)0.003 (3)0.007 (3)
C12A0.101 (4)0.071 (3)0.101 (3)0.002 (2)0.019 (3)0.004 (2)
C13A0.102 (3)0.086 (3)0.078 (3)0.034 (3)0.013 (2)0.011 (2)
Geometric parameters (Å, º) top
Cl1A—C2A1.708 (4)C2A—C3A1.389 (5)
Cl2A—C3A1.742 (4)C3A—C4A1.362 (6)
Cl1B—C2B1.726 (4)C4A—C5A1.367 (7)
Cl2B—C3B1.721 (4)C4A—H4A0.9300
O1A—C10A1.422 (5)C5A—C6A1.398 (6)
O1A—C13A1.424 (6)C5A—H5A0.9300
O1B—C10B1.406 (6)C6A—H6A0.9300
O1B—C11B1.430 (5)C7A—C9A1.438 (5)
O2A—C12A1.401 (7)C1B—C6B1.393 (5)
O2A—C11A1.416 (7)C1B—C2B1.401 (5)
N1A—C7A1.294 (4)C1B—C7B1.481 (4)
N1A—N2A1.365 (4)C2B—C3B1.400 (4)
N2A—C8A1.331 (5)C3B—C4B1.387 (6)
N3A—C8A1.342 (4)C4B—C5B1.370 (6)
N3A—H13A0.863 (10)C4B—H4B0.9300
N3A—H23A0.858 (10)C5B—C6B1.392 (5)
N4A—C9A1.326 (4)C5B—H5B0.9300
N4A—C8A1.347 (4)C6B—H6B0.9300
N5A—C9A1.336 (4)C7B—C9B1.433 (5)
N5A—H15A0.858 (10)C10B—C11Bi1.490 (7)
N5A—H25A0.862 (10)C10B—H10A0.9700
N1B—C7B1.317 (4)C10B—H10B0.9700
N1B—N2B1.353 (4)C11B—C10Bi1.490 (7)
N2B—C8B1.339 (4)C11B—H11A0.9700
N3B—C8B1.340 (4)C11B—H11B0.9700
N3B—H13B0.861 (10)C10A—C11A1.473 (7)
N3B—H23B0.861 (10)C10A—H10C0.9700
N4B—C9B1.320 (4)C10A—H10D0.9700
N4B—C8B1.349 (4)C11A—H11C0.9700
N5B—C9B1.338 (4)C11A—H11D0.9700
N5B—H15B0.859 (10)C12A—C13A1.487 (7)
N5B—H25B0.861 (10)C12A—H12A0.9700
C1A—C6A1.372 (5)C12A—H12B0.9700
C1A—C2A1.398 (5)C13A—H13C0.9700
C1A—C7A1.498 (4)C13A—H13D0.9700
C10A—O1A—C13A110.1 (3)C2B—C3B—Cl2B120.9 (3)
C10B—O1B—C11B109.2 (3)C5B—C4B—C3B120.5 (3)
C12A—O2A—C11A109.0 (3)C5B—C4B—H4B119.7
C7A—N1A—N2A120.1 (3)C3B—C4B—H4B119.7
C8A—N2A—N1A117.8 (3)C4B—C5B—C6B120.5 (3)
C8A—N3A—H13A122 (3)C4B—C5B—H5B119.7
C8A—N3A—H23A112 (3)C6B—C5B—H5B119.7
H13A—N3A—H23A126 (4)C5B—C6B—C1B120.4 (3)
C9A—N4A—C8A115.8 (3)C5B—C6B—H6B119.8
C9A—N5A—H15A119 (3)C1B—C6B—H6B119.8
C9A—N5A—H25A124 (3)N1B—C7B—C9B120.0 (3)
H15A—N5A—H25A117 (5)N1B—C7B—C1B118.5 (3)
C7B—N1B—N2B119.9 (3)C9B—C7B—C1B121.5 (2)
C8B—N2B—N1B117.6 (2)N2B—C8B—N3B117.1 (3)
C8B—N3B—H13B116 (3)N2B—C8B—N4B125.6 (3)
C8B—N3B—H23B122 (3)N3B—C8B—N4B117.2 (3)
H13B—N3B—H23B119 (4)N4B—C9B—N5B118.8 (3)
C9B—N4B—C8B116.0 (3)N4B—C9B—C7B120.0 (2)
C9B—N5B—H15B117 (3)N5B—C9B—C7B121.1 (3)
C9B—N5B—H25B116 (3)O1B—C10B—C11Bi111.8 (4)
H15B—N5B—H25B127 (4)O1B—C10B—H10A109.3
C6A—C1A—C2A119.1 (3)C11Bi—C10B—H10A109.3
C6A—C1A—C7A120.4 (3)O1B—C10B—H10B109.3
C2A—C1A—C7A120.6 (3)C11Bi—C10B—H10B109.3
C3A—C2A—C1A119.8 (4)H10A—C10B—H10B107.9
C3A—C2A—Cl1A120.3 (3)O1B—C11B—C10Bi109.8 (4)
C1A—C2A—Cl1A119.9 (3)O1B—C11B—H11A109.7
C4A—C3A—C2A120.8 (4)C10Bi—C11B—H11A109.7
C4A—C3A—Cl2A119.3 (3)O1B—C11B—H11B109.7
C2A—C3A—Cl2A119.9 (3)C10Bi—C11B—H11B109.7
C3A—C4A—C5A119.5 (4)H11A—C11B—H11B108.2
C3A—C4A—H4A120.3O1A—C10A—C11A110.5 (4)
C5A—C4A—H4A120.3O1A—C10A—H10C109.5
C4A—C5A—C6A120.9 (4)C11A—C10A—H10C109.5
C4A—C5A—H5A119.6O1A—C10A—H10D109.5
C6A—C5A—H5A119.6C11A—C10A—H10D109.5
C1A—C6A—C5A119.9 (4)H10C—C10A—H10D108.1
C1A—C6A—H6A120.1O2A—C11A—C10A110.3 (5)
C5A—C6A—H6A120.1O2A—C11A—H11C109.6
N1A—C7A—C9A120.4 (3)C10A—C11A—H11C109.6
N1A—C7A—C1A118.4 (3)O2A—C11A—H11D109.6
C9A—C7A—C1A121.2 (3)C10A—C11A—H11D109.6
N2A—C8A—N3A117.2 (3)H11C—C11A—H11D108.1
N2A—C8A—N4A125.8 (3)O2A—C12A—C13A110.0 (4)
N3A—C8A—N4A117.0 (3)O2A—C12A—H12A109.7
N4A—C9A—N5A118.3 (3)C13A—C12A—H12A109.7
N4A—C9A—C7A120.1 (3)O2A—C12A—H12B109.7
N5A—C9A—C7A121.6 (3)C13A—C12A—H12B109.7
C6B—C1B—C2B118.7 (3)H12A—C12A—H12B108.2
C6B—C1B—C7B122.0 (3)O1A—C13A—C12A110.1 (4)
C2B—C1B—C7B119.3 (3)O1A—C13A—H13C109.6
C3B—C2B—C1B120.5 (3)C12A—C13A—H13C109.6
C3B—C2B—Cl1B119.8 (3)O1A—C13A—H13D109.6
C1B—C2B—Cl1B119.7 (2)C12A—C13A—H13D109.6
C4B—C3B—C2B119.4 (3)H13C—C13A—H13D108.2
C4B—C3B—Cl2B119.7 (3)
C7A—N1A—N2A—C8A0.2 (6)C7B—C1B—C2B—Cl1B3.3 (4)
C7B—N1B—N2B—C8B3.0 (5)C1B—C2B—C3B—C4B1.4 (5)
C6A—C1A—C2A—C3A0.3 (5)Cl1B—C2B—C3B—C4B177.6 (3)
C7A—C1A—C2A—C3A178.8 (3)C1B—C2B—C3B—Cl2B179.5 (2)
C6A—C1A—C2A—Cl1A177.7 (3)Cl1B—C2B—C3B—Cl2B1.5 (4)
C7A—C1A—C2A—Cl1A3.2 (4)C2B—C3B—C4B—C5B0.8 (5)
C1A—C2A—C3A—C4A0.3 (5)Cl2B—C3B—C4B—C5B180.0 (3)
Cl1A—C2A—C3A—C4A177.8 (3)C3B—C4B—C5B—C6B0.5 (5)
C1A—C2A—C3A—Cl2A179.5 (3)C4B—C5B—C6B—C1B1.2 (5)
Cl1A—C2A—C3A—Cl2A1.4 (4)C2B—C1B—C6B—C5B0.7 (5)
C2A—C3A—C4A—C5A0.2 (6)C7B—C1B—C6B—C5B178.9 (3)
Cl2A—C3A—C4A—C5A179.0 (3)N2B—N1B—C7B—C9B5.1 (5)
C3A—C4A—C5A—C6A0.7 (7)N2B—N1B—C7B—C1B176.1 (3)
C2A—C1A—C6A—C5A0.1 (6)C6B—C1B—C7B—N1B74.9 (4)
C7A—C1A—C6A—C5A179.2 (3)C2B—C1B—C7B—N1B106.9 (4)
C4A—C5A—C6A—C1A0.6 (7)C6B—C1B—C7B—C9B104.0 (4)
N2A—N1A—C7A—C9A2.4 (6)C2B—C1B—C7B—C9B74.3 (4)
N2A—N1A—C7A—C1A179.3 (3)N1B—N2B—C8B—N3B171.1 (3)
C6A—C1A—C7A—N1A72.4 (5)N1B—N2B—C8B—N4B8.0 (5)
C2A—C1A—C7A—N1A108.4 (4)C9B—N4B—C8B—N2B3.8 (5)
C6A—C1A—C7A—C9A104.5 (4)C9B—N4B—C8B—N3B175.3 (3)
C2A—C1A—C7A—C9A74.6 (4)C8B—N4B—C9B—N5B175.4 (3)
N1A—N2A—C8A—N3A178.4 (3)C8B—N4B—C9B—C7B4.8 (4)
N1A—N2A—C8A—N4A2.2 (6)N1B—C7B—C9B—N4B9.3 (5)
C9A—N4A—C8A—N2A2.1 (6)C1B—C7B—C9B—N4B171.9 (3)
C9A—N4A—C8A—N3A178.5 (4)N1B—C7B—C9B—N5B170.8 (3)
C8A—N4A—C9A—N5A178.9 (4)C1B—C7B—C9B—N5B8.0 (5)
C8A—N4A—C9A—C7A0.2 (5)C11B—O1B—C10B—C11Bi58.2 (5)
N1A—C7A—C9A—N4A2.4 (6)C10B—O1B—C11B—C10Bi57.1 (5)
C1A—C7A—C9A—N4A179.2 (3)C13A—O1A—C10A—C11A56.2 (6)
N1A—C7A—C9A—N5A176.6 (4)C12A—O2A—C11A—C10A60.6 (6)
C1A—C7A—C9A—N5A0.2 (6)O1A—C10A—C11A—O2A58.5 (6)
C6B—C1B—C2B—C3B0.6 (5)C11A—O2A—C12A—C13A60.8 (6)
C7B—C1B—C2B—C3B177.7 (3)C10A—O1A—C13A—C12A56.4 (5)
C6B—C1B—C2B—Cl1B178.4 (2)O2A—C12A—C13A—O1A59.3 (6)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

GP acknowledges Assoc. Professor Boris-Marko Kukovec from University of Split, Faculty of Chemistry and Technology, for providing the overlay diagram. There are no conflicts to declare.

References

First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationAgilent (2010). CrysAlisPro, CrysAlis CCD and CrysAlis RED. Agilent Technologies (now Rigaku Oxford Diffraction), Yarnton, England.  Google Scholar
First citationAlmarsson, Ö., Peterson, M. L. & Zaworotko, M. J. (2012). Pharm. Patent Anal. 1, 313–327.  Google Scholar
First citationBernstein, J. (2007). Polymorphism in Molecular Crystals, International Union of Crystallography Monographs on Crystallography 14. Oxford University Press.  Google Scholar
First citationBolla, G., Sarma, B. & Nangia, A. K. (2022). Chem. Rev. 122, 11514–11603.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBraga, D., Grepioni, F. & Maini, L. (2010). Chem. Commun. 46, 6232–6242.  Web of Science CrossRef CAS Google Scholar
First citationChadha, R., Saini, A., Arora, P., Jain, D. S., Dasgupta, A. & Guru Row, T. N. (2011). CrystEngComm, 13, 6271–6284.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheney, M. L., Shan, N., Healey, E. R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2010). Cryst. Growth Des. 10, 394–405.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDuggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. (2016). Chem. Commun. 52, 640–655.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationÉvora, A. O. L., Castro, R. A. E., Maria, T. M. R., Ramos Silva, M., Canotilho, J. & Eusébio, E. S. (2019). Eur. J. Pharm. Sci. 129, 148–162.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGriesser, U. J. (2006). In Polymorphism: in the Pharmaceutical Industry, edited by R. Hilfiker, pp. 211–230. Wiley-VCH.  Google Scholar
First citationHall, C. L., Potticary, J., Sparkes, H. A., Pridmore, N. E. & Hall, S. R. (2018). Acta Cryst. E74, 678–681.  CSD CrossRef IUCr Journals Google Scholar
First citationHaskins, M. M., Lusi, M. & Zaworotko, M. J. (2022). Cryst. Growth Des. 22, 3333–3342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhankari, R. K. & Grant, D. J. W. (1995). Thermochim. Acta, 248, 61–79.  CrossRef CAS Web of Science Google Scholar
First citationKubicki, M. & Codding, P. W. (2001). J. Mol. Struct. 570, 53–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationLekšić, E. (2013). PhD thesis. University of Zagreb, Croatia.  Google Scholar
First citationLekšić, E., Pavlović, G. & Meštrović, E. (2010). Cryst. Growth Des. 12, 1847–1858.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorris, K. R. (1999). In Polymorphism in Pharmaceutical Solids, edited by H. G. Brittain, pp. 125–181. Marcel Dekker, Inc.  Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659–659.  CrossRef CAS IUCr Journals Google Scholar
First citationQian, Y., Lv, P.-C., Shi, L., Fang, R.-Q., Song, Z.-C. & Zhu, H.-L. (2009). J. Chem. Sci. 121, 463–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodriguez-Hornedo, N., Nehm, S. J. & Jayasankar, A. (2007). Cocrystals. In Design, Properties and Formation Mechanisms, Encyclopedia of Pharmaceutical Technology, edited by J. Swarbrick, 3rd ed., pp. 615–635. InformaHealth Care.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B. & Ravikumar, K. (2011). J. Chem. Crystallogr. 41, 1289–1300.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrask, A. V. (2007). Mol. Pharm. 4, 301–309.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds