organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­methyl 5-oxo-2-[(2,4,4-tri­methyl­pentan-2-yl)amino]-4,5-di­hydro­pyrano[3,2-c]chromene-3,4-di­carboxyl­ate

aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 15 May 2012; accepted 18 June 2012; online 23 June 2012)

The title compound, C24H29NO7, is asymmetric with a chiral centre located in the pyran ring and crystallizes as a racemate. The coumarin ring system and the fused pyran ring make a dihedral angle of 10.46 (8)°. A short intra­molecular N—H⋯O hydrogen bond between the amino group and the vicinal carbonyl group generates an S(6) ring. Inter­molecular C—H⋯O inter­actions contribute to the stability of the crystal structure.

Related literature

For the biological activity of pyran­ocoumarin compounds, see: Kawaii et al. (2001[Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yanao, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905-1911.]); Goel et al. (1997[Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080-1083.]); Xu et al. (2006[Xu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610-4626.]). For a similar compound, see: Inglebert et al. (2011[Inglebert, S. A., Sethusankar, K., Arun, Y. & Perumal, P. T. (2011). Acta Cryst. E67, o2955.]). For bond-angle distortions, see: Chinnakali et al. (1998[Chinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 367-368.]); Kumar et al. (1997[Kumar, S., Chinnakali, K., Sivakumar, K., Fun, H.-K. & Sriraghavan, K. (1997). Acta Cryst. C53, 1854-1855.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C24H29NO7

  • Mr = 443.48

  • Monoclinic, C 2/c

  • a = 22.0329 (17) Å

  • b = 11.8675 (8) Å

  • c = 18.4861 (14) Å

  • β = 107.946 (4)°

  • V = 4598.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.981

  • 17657 measured reflections

  • 3384 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 23.5°

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.01

  • 3384 reflections

  • 296 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O2i 0.96 2.58 3.458 (3) 153
C23—H23A⋯O6ii 0.96 2.54 3.255 (4) 131
C23—H23B⋯O1iii 0.96 2.55 3.509 (4) 174
N1—H1⋯O6 0.86 2.01 2.660 (2) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are natural or synthetic compounds used as pharmaceuticals and herbicides. They exhibit fluorescent properties due to the presence of the benzopyrone moiety. Pyranocoumarin and its derivatives show strong activity against cancer cell lines (Kawaii et al., 2001). Some naturally occurring pyranocoumarins show antiulcer activity, anti-hepatitis B virus activity, cytotoxic activities and anti-TB activity (Goel et al., 1997 and Xu et al., 2006). Outside the biological applications of coumarin and its derivatives, there are also applications as cosmetics, optical brightening agents and laser dyes.

Fused benzene and pyranoid rings form the benzopyran system, which can be described as planar, with the dihedral angle between the best planes of the rings being 2.07 (11)°. The coumarin ring system, consisting of atoms C1–C6, C7–C9 and O1 and O2 is almost planar with maximum deviation from the mean plane of 0.033 (2) Å for C8. The coumarin ring system (O1/C1–C9) makes a dihedral angle of 10.46 (8)° with pyran ring (O3/C7–C12). The coumarin ring system and pyran ring make the dihedral angles of 77.56 (10)°, 17.74 (7)°, 87.03 (10)° and 9.74 (6)° with the two methyl carboxylates (C13/O4/O5/C14) and (C15/O6/O7/C16), respectively. The methyl carboxylates are almost perpendicular to each other because the dihedral angle between them is 88.84 (15)°.

In the benzopyran ring, the bond distances of O1–C9 and C9–C8 are 1.372 (3) Å and 1.448 (3) Å, respectively, indicating that the electrons are delocalized in the ring with the carbonyl group acting as an electron-withdrawing group. This is corroborated by the fact that the benzopyran ring is planar. The title structure exhibits the structural similarities with our previously reported structure (Inglebert et al., 2011). As observed in other coumarin derivatives, the C5–C6 and C7–C8 bonds in the coumarin moiety show double-bond character and steric interactions cause the widening of angles C8–C9–O2 (125.0 (2)°) and C7–C6–C5 (125.24 (19)°), and the narrowing of angles O1–C9–O2 (117.22 (18)°) and O1–C1–C2 (116.82 (19)°) from 120° (Chinnakali et al., 1998; Kumar et al., 1997).

The carbonyl oxygen atom O6 acts as a bifurcated acceptor, accepting both the intramoleclar N1—H1···O6 and the intermolecular C23—H23A···O6 hydrogen bonds. The intramolecular bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O interactions (Table 1).

Related literature top

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Goel et al. (1997); Xu et al. (2006). For a similar compound, see: Inglebert et al. (2011). For bond-angle distortions, see: Chinnakali et al. (1998); Kumar et al. (1997). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a magnetically stirred solution of 4-hydroxy coumarin (0.162 g, 1.0 mmol) and dimethyl acetylenedicarboxylate (0.142 g, 1.0 mmol) in CH3CN (10 ml) was added a solution of 1,1,3,3-tetra methylbutyl isocynaide (0.139 g, 1.0 mmol) at room temperature over 5 min. The mixture was then stirred for 24 h. After completion of the reaction, the solvent was removed under vacuum and the solid residue was washed with n-hexane and crystallized from CH2Cl2n-hexane (1/2) to give the product as white crystals (0.368 g, 83%).

Refinement top

The H atoms bound to the C and N atoms were placed geometrically and treated as riding atoms, with d(N—H) = 0.86 Å and Uiso(H) = 1.2Ueq(N) for the amino group, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene and d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The rotation angles for methyl groups were optimised by least squares.

Structure description top

Coumarins are natural or synthetic compounds used as pharmaceuticals and herbicides. They exhibit fluorescent properties due to the presence of the benzopyrone moiety. Pyranocoumarin and its derivatives show strong activity against cancer cell lines (Kawaii et al., 2001). Some naturally occurring pyranocoumarins show antiulcer activity, anti-hepatitis B virus activity, cytotoxic activities and anti-TB activity (Goel et al., 1997 and Xu et al., 2006). Outside the biological applications of coumarin and its derivatives, there are also applications as cosmetics, optical brightening agents and laser dyes.

Fused benzene and pyranoid rings form the benzopyran system, which can be described as planar, with the dihedral angle between the best planes of the rings being 2.07 (11)°. The coumarin ring system, consisting of atoms C1–C6, C7–C9 and O1 and O2 is almost planar with maximum deviation from the mean plane of 0.033 (2) Å for C8. The coumarin ring system (O1/C1–C9) makes a dihedral angle of 10.46 (8)° with pyran ring (O3/C7–C12). The coumarin ring system and pyran ring make the dihedral angles of 77.56 (10)°, 17.74 (7)°, 87.03 (10)° and 9.74 (6)° with the two methyl carboxylates (C13/O4/O5/C14) and (C15/O6/O7/C16), respectively. The methyl carboxylates are almost perpendicular to each other because the dihedral angle between them is 88.84 (15)°.

In the benzopyran ring, the bond distances of O1–C9 and C9–C8 are 1.372 (3) Å and 1.448 (3) Å, respectively, indicating that the electrons are delocalized in the ring with the carbonyl group acting as an electron-withdrawing group. This is corroborated by the fact that the benzopyran ring is planar. The title structure exhibits the structural similarities with our previously reported structure (Inglebert et al., 2011). As observed in other coumarin derivatives, the C5–C6 and C7–C8 bonds in the coumarin moiety show double-bond character and steric interactions cause the widening of angles C8–C9–O2 (125.0 (2)°) and C7–C6–C5 (125.24 (19)°), and the narrowing of angles O1–C9–O2 (117.22 (18)°) and O1–C1–C2 (116.82 (19)°) from 120° (Chinnakali et al., 1998; Kumar et al., 1997).

The carbonyl oxygen atom O6 acts as a bifurcated acceptor, accepting both the intramoleclar N1—H1···O6 and the intermolecular C23—H23A···O6 hydrogen bonds. The intramolecular bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O interactions (Table 1).

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Goel et al. (1997); Xu et al. (2006). For a similar compound, see: Inglebert et al. (2011). For bond-angle distortions, see: Chinnakali et al. (1998); Kumar et al. (1997). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. H atoms are present as small spheres of arbitary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···O and intramolecular N—H···O interactions are shown as dashed lines. For the clarity, H atoms not involved in these interactions have been omited.
rac-Dimethyl 5-oxo-2-[(2,4,4-trimethylpentan-2-yl)amino]-4,5- dihydropyrano[3,2-c]chromene-3,4-dicarboxylate top
Crystal data top
C24H29NO7F(000) = 1888
Mr = 443.48Dx = 1.281 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3384 reflections
a = 22.0329 (17) Åθ = 2.1–23.5°
b = 11.8675 (8) ŵ = 0.09 mm1
c = 18.4861 (14) ÅT = 293 K
β = 107.946 (4)°Block, colourless
V = 4598.5 (6) Å30.35 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3384 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 23.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2424
Tmin = 0.972, Tmax = 0.981k = 1313
17657 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0745P)2 + 2.5421P]
where P = (Fo2 + 2Fc2)/3
3384 reflections(Δ/σ)max < 0.001
296 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H29NO7V = 4598.5 (6) Å3
Mr = 443.48Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.0329 (17) ŵ = 0.09 mm1
b = 11.8675 (8) ÅT = 293 K
c = 18.4861 (14) Å0.35 × 0.25 × 0.20 mm
β = 107.946 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2623 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.035
17657 measured reflectionsθmax = 23.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
3384 reflectionsΔρmin = 0.24 e Å3
296 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07781 (10)0.65241 (18)0.08539 (12)0.0434 (5)
C20.01923 (11)0.6706 (2)0.09593 (14)0.0580 (6)
H20.01630.62910.06900.070*
C30.01469 (13)0.7514 (3)0.14700 (16)0.0707 (8)
H30.02450.76490.15450.085*
C40.06739 (12)0.8128 (2)0.18737 (15)0.0666 (7)
H40.06340.86690.22200.080*
C50.12543 (11)0.7948 (2)0.17689 (13)0.0538 (6)
H50.16070.83670.20420.065*
C60.13161 (10)0.71310 (18)0.12499 (12)0.0411 (5)
C70.18985 (9)0.68570 (17)0.10922 (11)0.0362 (5)
C80.19380 (9)0.60197 (16)0.06255 (11)0.0356 (5)
C90.13680 (10)0.54036 (18)0.02177 (12)0.0408 (5)
C100.25577 (9)0.56956 (16)0.05062 (11)0.0359 (5)
H100.24860.55390.00340.043*
C110.30259 (9)0.66519 (16)0.07534 (10)0.0347 (5)
C120.29355 (9)0.74938 (16)0.12167 (11)0.0348 (5)
C130.28234 (10)0.46404 (17)0.09713 (13)0.0413 (5)
C140.31163 (16)0.2746 (2)0.09316 (18)0.0842 (9)
H14A0.35330.29050.12760.126*
H14B0.31500.21900.05690.126*
H14C0.28470.24650.12120.126*
C150.36146 (10)0.66180 (18)0.05798 (11)0.0412 (5)
C160.42747 (14)0.5498 (2)0.0079 (2)0.0802 (9)
H16A0.43910.61640.01410.120*
H16B0.42440.48730.02600.120*
H16C0.45940.53410.05550.120*
C170.33589 (10)0.91740 (17)0.20939 (12)0.0419 (5)
C180.27751 (13)0.99465 (19)0.18546 (14)0.0598 (7)
H18A0.27321.02570.13620.090*
H18B0.28271.05460.22170.090*
H18C0.24000.95210.18350.090*
C190.39446 (13)0.9891 (2)0.21481 (15)0.0643 (7)
H19A0.43140.94150.22500.096*
H19B0.40051.04290.25520.096*
H19C0.38851.02820.16760.096*
C200.33782 (10)0.85921 (18)0.28459 (11)0.0442 (5)
H20A0.33670.91900.31990.053*
H20B0.29790.81860.27460.053*
C210.39048 (12)0.7775 (2)0.32812 (13)0.0598 (7)
C220.4003 (2)0.6793 (3)0.28107 (18)0.1349 (19)
H22A0.36020.64250.25790.202*
H22B0.42960.62680.31320.202*
H22C0.41730.70600.24220.202*
C230.45323 (14)0.8378 (3)0.36641 (19)0.1006 (11)
H23A0.48090.78890.40350.151*
H23B0.44510.90490.39090.151*
H23C0.47330.85770.32890.151*
C240.3680 (2)0.7316 (3)0.39292 (19)0.1155 (13)
H24A0.32930.68940.37210.173*
H24B0.36020.79320.42250.173*
H24C0.40030.68340.42470.173*
N10.33318 (8)0.83453 (14)0.14823 (9)0.0427 (4)
H10.36210.84320.12640.051*
O10.08075 (6)0.56951 (12)0.03460 (8)0.0464 (4)
O20.13476 (7)0.46490 (13)0.02235 (9)0.0550 (4)
O30.24034 (6)0.75349 (12)0.14530 (8)0.0416 (4)
O40.29947 (10)0.46127 (14)0.16463 (10)0.0717 (6)
O50.28442 (8)0.37646 (12)0.05382 (9)0.0620 (5)
O60.40352 (7)0.73256 (13)0.07379 (9)0.0530 (4)
O70.36707 (8)0.56715 (13)0.02049 (10)0.0614 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (13)0.0505 (13)0.0409 (12)0.0018 (10)0.0096 (9)0.0054 (11)
C20.0359 (13)0.0777 (17)0.0587 (15)0.0055 (12)0.0120 (11)0.0052 (14)
C30.0436 (15)0.099 (2)0.0752 (18)0.0093 (15)0.0270 (13)0.0021 (17)
C40.0557 (17)0.0817 (18)0.0679 (17)0.0057 (14)0.0272 (14)0.0140 (14)
C50.0436 (14)0.0648 (15)0.0543 (14)0.0019 (12)0.0168 (11)0.0102 (12)
C60.0349 (12)0.0460 (12)0.0417 (12)0.0010 (10)0.0108 (9)0.0014 (10)
C70.0315 (11)0.0392 (11)0.0345 (11)0.0039 (9)0.0052 (8)0.0002 (9)
C80.0345 (12)0.0339 (11)0.0355 (11)0.0043 (9)0.0067 (9)0.0021 (9)
C90.0393 (13)0.0406 (12)0.0399 (12)0.0048 (10)0.0086 (9)0.0051 (10)
C100.0366 (11)0.0358 (11)0.0345 (11)0.0039 (9)0.0098 (9)0.0032 (9)
C110.0337 (11)0.0332 (11)0.0358 (10)0.0038 (9)0.0087 (9)0.0006 (9)
C120.0318 (11)0.0360 (11)0.0346 (11)0.0026 (9)0.0075 (9)0.0006 (9)
C130.0381 (12)0.0374 (12)0.0474 (14)0.0037 (9)0.0117 (10)0.0030 (10)
C140.096 (2)0.0413 (14)0.102 (2)0.0201 (15)0.0102 (18)0.0025 (14)
C150.0416 (13)0.0395 (12)0.0424 (12)0.0045 (11)0.0128 (10)0.0022 (10)
C160.0652 (18)0.0710 (18)0.123 (3)0.0001 (15)0.0564 (18)0.0253 (17)
C170.0446 (13)0.0368 (11)0.0428 (12)0.0036 (10)0.0111 (10)0.0089 (9)
C180.0705 (17)0.0421 (13)0.0578 (14)0.0103 (12)0.0064 (12)0.0015 (11)
C190.0749 (18)0.0552 (15)0.0645 (15)0.0293 (13)0.0243 (14)0.0208 (12)
C200.0428 (13)0.0444 (12)0.0423 (12)0.0008 (10)0.0086 (10)0.0074 (10)
C210.0651 (17)0.0523 (14)0.0490 (14)0.0163 (12)0.0016 (12)0.0029 (11)
C220.192 (4)0.088 (2)0.079 (2)0.089 (3)0.025 (2)0.0216 (19)
C230.060 (2)0.117 (3)0.101 (2)0.0290 (18)0.0102 (17)0.010 (2)
C240.153 (4)0.099 (3)0.079 (2)0.022 (2)0.014 (2)0.038 (2)
N10.0449 (11)0.0427 (10)0.0434 (10)0.0124 (9)0.0178 (8)0.0107 (8)
O10.0352 (9)0.0525 (9)0.0489 (9)0.0083 (7)0.0090 (7)0.0021 (7)
O20.0519 (10)0.0524 (10)0.0580 (10)0.0149 (8)0.0129 (8)0.0181 (8)
O30.0341 (8)0.0466 (8)0.0442 (8)0.0070 (7)0.0125 (6)0.0120 (7)
O40.1079 (15)0.0542 (10)0.0471 (11)0.0141 (10)0.0153 (10)0.0083 (8)
O50.0769 (12)0.0363 (9)0.0641 (10)0.0097 (8)0.0087 (9)0.0089 (8)
O60.0446 (9)0.0528 (9)0.0674 (10)0.0145 (8)0.0259 (8)0.0139 (8)
O70.0536 (10)0.0524 (10)0.0898 (12)0.0100 (8)0.0391 (9)0.0266 (9)
Geometric parameters (Å, º) top
C1—O11.375 (3)C15—O71.345 (3)
C1—C21.380 (3)C16—O71.434 (3)
C1—C61.388 (3)C16—H16A0.9600
C2—C31.370 (4)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.379 (4)C17—N11.486 (3)
C3—H30.9300C17—C191.523 (3)
C4—C51.368 (3)C17—C181.530 (3)
C4—H40.9300C17—C201.541 (3)
C5—C61.400 (3)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—C71.438 (3)C18—H18C0.9600
C7—C81.336 (3)C19—H19A0.9600
C7—O31.368 (2)C19—H19B0.9600
C8—C91.448 (3)C19—H19C0.9600
C8—C101.499 (3)C20—C211.535 (3)
C9—O21.203 (2)C20—H20A0.9700
C9—O11.372 (3)C20—H20B0.9700
C10—C111.507 (3)C21—C221.510 (4)
C10—C131.530 (3)C21—C231.524 (4)
C10—H100.9800C21—C241.531 (4)
C11—C121.370 (3)C22—H22A0.9600
C11—C151.429 (3)C22—H22B0.9600
C12—N11.327 (2)C22—H22C0.9600
C12—O31.372 (2)C23—H23A0.9600
C13—O41.188 (3)C23—H23B0.9600
C13—O51.321 (2)C23—H23C0.9600
C14—O51.443 (3)C24—H24A0.9600
C14—H14A0.9600C24—H24B0.9600
C14—H14B0.9600C24—H24C0.9600
C14—H14C0.9600N1—H10.8600
C15—O61.217 (2)
O1—C1—C2116.82 (19)H16B—C16—H16C109.5
O1—C1—C6121.28 (18)N1—C17—C19104.75 (17)
C2—C1—C6121.9 (2)N1—C17—C18110.10 (17)
C3—C2—C1118.5 (2)C19—C17—C18107.69 (19)
C3—C2—H2120.8N1—C17—C20111.92 (16)
C1—C2—H2120.8C19—C17—C20113.81 (18)
C2—C3—C4121.0 (2)C18—C17—C20108.45 (18)
C2—C3—H3119.5C17—C18—H18A109.5
C4—C3—H3119.5C17—C18—H18B109.5
C5—C4—C3120.6 (2)H18A—C18—H18B109.5
C5—C4—H4119.7C17—C18—H18C109.5
C3—C4—H4119.7H18A—C18—H18C109.5
C4—C5—C6119.9 (2)H18B—C18—H18C109.5
C4—C5—H5120.1C17—C19—H19A109.5
C6—C5—H5120.1C17—C19—H19B109.5
C1—C6—C5118.2 (2)H19A—C19—H19B109.5
C1—C6—C7116.52 (19)C17—C19—H19C109.5
C5—C6—C7125.24 (19)H19A—C19—H19C109.5
C8—C7—O3123.17 (18)H19B—C19—H19C109.5
C8—C7—C6122.59 (18)C21—C20—C17124.20 (19)
O3—C7—C6114.24 (17)C21—C20—H20A106.3
C7—C8—C9119.55 (19)C17—C20—H20A106.3
C7—C8—C10121.96 (17)C21—C20—H20B106.3
C9—C8—C10118.50 (17)C17—C20—H20B106.3
O2—C9—O1117.22 (18)H20A—C20—H20B106.4
O2—C9—C8125.0 (2)C22—C21—C23111.1 (3)
O1—C9—C8117.73 (19)C22—C21—C24108.3 (3)
C8—C10—C11109.38 (16)C23—C21—C24105.7 (3)
C8—C10—C13109.61 (16)C22—C21—C20113.9 (2)
C11—C10—C13109.78 (16)C23—C21—C20112.2 (2)
C8—C10—H10109.4C24—C21—C20105.1 (2)
C11—C10—H10109.4C21—C22—H22A109.5
C13—C10—H10109.4C21—C22—H22B109.5
C12—C11—C15118.54 (17)H22A—C22—H22B109.5
C12—C11—C10121.39 (17)C21—C22—H22C109.5
C15—C11—C10119.64 (17)H22A—C22—H22C109.5
N1—C12—C11125.51 (18)H22B—C22—H22C109.5
N1—C12—O3112.61 (16)C21—C23—H23A109.5
C11—C12—O3121.87 (17)C21—C23—H23B109.5
O4—C13—O5123.8 (2)H23A—C23—H23B109.5
O4—C13—C10123.77 (19)C21—C23—H23C109.5
O5—C13—C10112.47 (18)H23A—C23—H23C109.5
O5—C14—H14A109.5H23B—C23—H23C109.5
O5—C14—H14B109.5C21—C24—H24A109.5
H14A—C14—H14B109.5C21—C24—H24B109.5
O5—C14—H14C109.5H24A—C24—H24B109.5
H14A—C14—H14C109.5C21—C24—H24C109.5
H14B—C14—H14C109.5H24A—C24—H24C109.5
O6—C15—O7121.03 (19)H24B—C24—H24C109.5
O6—C15—C11127.07 (19)C12—N1—C17130.79 (17)
O7—C15—C11111.89 (18)C12—N1—H1114.6
O7—C16—H16A109.5C17—N1—H1114.6
O7—C16—H16B109.5C9—O1—C1122.20 (16)
H16A—C16—H16B109.5C7—O3—C12118.03 (15)
O7—C16—H16C109.5C13—O5—C14116.13 (19)
H16A—C16—H16C109.5C15—O7—C16116.12 (18)
O1—C1—C2—C3179.0 (2)C15—C11—C12—O3175.20 (17)
C6—C1—C2—C30.1 (3)C10—C11—C12—O32.7 (3)
C1—C2—C3—C40.4 (4)C8—C10—C13—O465.5 (3)
C2—C3—C4—C50.4 (4)C11—C10—C13—O454.7 (3)
C3—C4—C5—C60.2 (4)C8—C10—C13—O5114.86 (19)
O1—C1—C6—C5178.78 (19)C11—C10—C13—O5124.98 (18)
C2—C1—C6—C50.0 (3)C12—C11—C15—O67.8 (3)
O1—C1—C6—C70.8 (3)C10—C11—C15—O6179.6 (2)
C2—C1—C6—C7179.6 (2)C12—C11—C15—O7171.88 (18)
C4—C5—C6—C10.0 (3)C10—C11—C15—O70.7 (3)
C4—C5—C6—C7179.6 (2)N1—C17—C20—C2160.1 (3)
C1—C6—C7—C83.9 (3)C19—C17—C20—C2158.4 (3)
C5—C6—C7—C8175.7 (2)C18—C17—C20—C21178.2 (2)
C1—C6—C7—O3175.31 (17)C17—C20—C21—C2255.2 (4)
C5—C6—C7—O35.1 (3)C17—C20—C21—C2372.1 (3)
O3—C7—C8—C9174.87 (17)C17—C20—C21—C24173.5 (2)
C6—C7—C8—C94.3 (3)C11—C12—N1—C17166.6 (2)
O3—C7—C8—C104.9 (3)O3—C12—N1—C1713.7 (3)
C6—C7—C8—C10175.94 (18)C19—C17—N1—C12177.1 (2)
C7—C8—C9—O2178.8 (2)C18—C17—N1—C1267.3 (3)
C10—C8—C9—O20.9 (3)C20—C17—N1—C1253.4 (3)
C7—C8—C9—O11.6 (3)O2—C9—O1—C1178.21 (18)
C10—C8—C9—O1178.63 (16)C8—C9—O1—C11.4 (3)
C7—C8—C10—C1119.0 (2)C2—C1—O1—C9177.13 (18)
C9—C8—C10—C11160.78 (17)C6—C1—O1—C91.7 (3)
C7—C8—C10—C13101.4 (2)C8—C7—O3—C1212.7 (3)
C9—C8—C10—C1378.8 (2)C6—C7—O3—C12166.56 (16)
C8—C10—C11—C1217.8 (2)N1—C12—O3—C7166.09 (16)
C13—C10—C11—C12102.5 (2)C11—C12—O3—C713.6 (3)
C8—C10—C11—C15169.79 (17)O4—C13—O5—C142.4 (3)
C13—C10—C11—C1569.9 (2)C10—C13—O5—C14177.3 (2)
C15—C11—C12—N15.2 (3)O6—C15—O7—C166.4 (3)
C10—C11—C12—N1177.64 (18)C11—C15—O7—C16173.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O2i0.962.583.458 (3)153
C23—H23A···O6ii0.962.543.255 (4)131
C23—H23B···O1iii0.962.553.509 (4)174
N1—H1···O60.862.012.660 (2)131
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H29NO7
Mr443.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.0329 (17), 11.8675 (8), 18.4861 (14)
β (°) 107.946 (4)
V3)4598.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
17657, 3384, 2623
Rint0.035
θmax (°)23.5
(sin θ/λ)max1)0.560
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.01
No. of reflections3384
No. of parameters296
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O2i0.962.583.458 (3)153
C23—H23A···O6ii0.962.543.255 (4)131
C23—H23B···O1iii0.962.553.509 (4)174
N1—H1···O60.862.012.660 (2)131
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of Physics Department, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Fun, H.-K., Sriraghavan, K. & Ramakrishnan, V. T. (1998). Acta Cryst. C54, 367–368.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080–1083.  CAS PubMed Google Scholar
First citationInglebert, S. A., Sethusankar, K., Arun, Y. & Perumal, P. T. (2011). Acta Cryst. E67, o2955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yanao, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905–1911.  Web of Science PubMed CAS Google Scholar
First citationKumar, S., Chinnakali, K., Sivakumar, K., Fun, H.-K. & Sriraghavan, K. (1997). Acta Cryst. C53, 1854–1855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610–4626.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds