organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2,N6,N6-Tetra­kis(2,3,4,5,6-penta­fluoro­benzo­yl)pyridine-2,6-di­amine

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 Jyväskylä, Finland, and bUniversity of Technology and Life Sciences, Department of Chemistry, Seminaryjna 3, PL-85-326 Bydgoszcz, Poland
*Correspondence e-mail: arto.m.valkonen@jyu.fi

(Received 14 November 2011; accepted 16 November 2011; online 25 November 2011)

The title compound, C33H3F20N3O4, is a highly fluorinated organic imide that was isolated as an unexpected product from the reaction of 2,6-diamino­pyridine with 2,3,4,5,6-penta­fluoro­benzoyl chloride in a 1:2 molar ratio. The mol­ecule is located on a twofold axis and one of its symmetry-independent 2,3,4,5,6-penta­fluoro­benzoyl groups is disordered over two sets of sites, the occupancy of the major component being 0.773 (3). In the major component, the dihedral angle between the perfluoro­phenyl groups is 63.64 (10)°, and these groups form dihedral angles of 67.14 (7) and 21.1 (2)° with the pyridine core. Short inter­molecular C—H⋯O and C—H⋯N contacts are found in the crystal structure.

Related literature

For preparation of 2-acyl­amino­pyridines and their structures, see: Ośmiałowski et al. (2010a[Ośmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010a). J. Phys. Chem. A, 114, 10421-10426.],b[Ośmiałowski, B., Kolehmainen, E., Gawinecki, R., Kauppinen, R., Koivukorpi, J. & Valkonen, A. (2010b). Struct. Chem. 21, 1061-1067.]). For related structures, see: Kovalevsky et al. (1999[Kovalevsky, A. Y., Shishkin, O. V. & Ponomarev, I. I. (1999). Acta Cryst. C55, 1914-1915.]).

[Scheme 1]

Experimental

Crystal data
  • C33H3F20N3O4

  • Mr = 885.38

  • Monoclinic, C 2/c

  • a = 21.2370 (5) Å

  • b = 6.3940 (1) Å

  • c = 23.1045 (5) Å

  • β = 100.585 (1)°

  • V = 3083.96 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 123 K

  • 0.30 × 0.18 × 0.16 mm

Data collection
  • Bruker–Nonius KappaCCD with an APEXII detector diffractometer

  • 7138 measured reflections

  • 3785 independent reflections

  • 2526 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.133

  • S = 1.05

  • 3785 reflections

  • 366 parameters

  • 97 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.95 2.67 3.621 (5) 180
C3—H3⋯O1i 0.95 2.52 3.318 (3) 141
Symmetry code: (i) x, y-1, z.

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was accidentally obtained by reaction of 2,6-diaminopyridine with two equivalents of 2,3,4,5,6-pentafluorobenzoyl chloride, while the preparation of N,N'-bis(pentafluorobenzoyl)-2,6-diaminopyridine was attempted. The reaction was carried out analogously to our previously reported preparations of 2-acylaminopyridines (Ośmiałowski et al., 2010a). Previously we have structurally characterized two related secondary amides (Ośmiałowski et al., 2010b). This title imide has not been previously reported in the literature. The crystal structure of closely related imide, N,N'-(pyridine-2,6-diyl)-bis(naphthalenedicarboximide), has been reported (Kovalevsky et al., 1999).

In the crystal molecules are located on a twofold rotation axis and one of the symmetry independent perfluorobenzoyl group is disordered over two sets of sites with different occupancies (Fig.1). The perfluorophenyl groups are twisted out of the pyridine core by 67.14 (7) and 21.1 (2) ° in the major component whereas in the minor component these angles are 67.14 (7) and 63.4 (4)°. Furthermore, the dihedral angle between perfluorophenyl - group planes is 63.64 (10) ° [the minor component 67.9 (4) °]. Mercury (Macrae et al., 2008) helped us to find a motif along [0-10] direction (Fig. 2), where the molecule is connected to the translation related one by two C—H···O contacts (Table 1). Between these molecules there is also one rather long but linear C—H···N contact. A few F···CAr, F···F and F···O type contacts were found, which are only slightly shorter than the sum of van der Waals radii.

Related literature top

For preparation of 2-acylaminopyridines and their structures, see: Ośmiałowski et al. (2010a,b). For related structures, see: Kovalevsky et al. (1999).

Experimental top

2,3,4,5,6-Pentafluorobenzoyl chloride (2.28 g, 10 mmol) was added dropwise to a magnetically stirred solution of 2,6-diaminopyridine (0.54 g, 5 mmol) and triethylamine (1 ml) in dry methylene chloride (6 ml) at 0 °C. Subsequently the reaction mixture was refluxed for 4 h and the solution was treated with water and extracted with CH2Cl2. The organic solvent of the extract was evaporated under reduced pressure and the product recrystallized from hexane/ethyl acetate (10:1) mixture. 1H NMR (CDCl3): δ (p.p.m.) = 8.00 (t, 1H, H4), 7.45 (d, 2H, H3). Single crystals suitable for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where CDCl3 was used as a solvent.

Refinement top

All H atoms were visible in electron density maps, but were calculated at their idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å with Uiso(H) of 1.2 times Ueq(C). A large number of restraints was needed to rationalize the disorder in perfluorobenzoyl group. FLAT (2 restraints, s=0.1) was applied to amide groups of both components to make them more planar. SADI (3 restraints, s=0.02) was applied for amide groups of both components to equalize the bond distances. DELU (2 restraints, s1=s2=0.01) was applied for one C—C and one C—F bond of the major component to equalize the anisotropic displacement parameters. SIMU (84 restraints, s=0.01, st=0.02, dmax=1.7) was applied to carbons of the disordered perfluorophenyl ring and carbonyl group of both components to equalize the anisotropic displacement parameters. ISOR (6 restraints, s=0.01, st=0.02) was applied to carbonyl oxygen atom of the minor component to prevent the atom to appear as non-positive definite.

Structure description top

The title compound was accidentally obtained by reaction of 2,6-diaminopyridine with two equivalents of 2,3,4,5,6-pentafluorobenzoyl chloride, while the preparation of N,N'-bis(pentafluorobenzoyl)-2,6-diaminopyridine was attempted. The reaction was carried out analogously to our previously reported preparations of 2-acylaminopyridines (Ośmiałowski et al., 2010a). Previously we have structurally characterized two related secondary amides (Ośmiałowski et al., 2010b). This title imide has not been previously reported in the literature. The crystal structure of closely related imide, N,N'-(pyridine-2,6-diyl)-bis(naphthalenedicarboximide), has been reported (Kovalevsky et al., 1999).

In the crystal molecules are located on a twofold rotation axis and one of the symmetry independent perfluorobenzoyl group is disordered over two sets of sites with different occupancies (Fig.1). The perfluorophenyl groups are twisted out of the pyridine core by 67.14 (7) and 21.1 (2) ° in the major component whereas in the minor component these angles are 67.14 (7) and 63.4 (4)°. Furthermore, the dihedral angle between perfluorophenyl - group planes is 63.64 (10) ° [the minor component 67.9 (4) °]. Mercury (Macrae et al., 2008) helped us to find a motif along [0-10] direction (Fig. 2), where the molecule is connected to the translation related one by two C—H···O contacts (Table 1). Between these molecules there is also one rather long but linear C—H···N contact. A few F···CAr, F···F and F···O type contacts were found, which are only slightly shorter than the sum of van der Waals radii.

For preparation of 2-acylaminopyridines and their structures, see: Ośmiałowski et al. (2010a,b). For related structures, see: Kovalevsky et al. (1999).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structures of the major (top) and the minor (bottom) components of the disordered title molecule showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The short C—H···O/N contacts (blue dashed lines) organizing the molecules in the [0 1 0] direction. The minor component of disordered part of the molecule was removed for clarity.
N2,N2,N6,N6- Tetrakis(2,3,4,5,6-pentafluorobenzoyl)pyridine-2,6-diamine top
Crystal data top
C33H3F20N3O4F(000) = 1736
Mr = 885.38Dx = 1.907 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4030 reflections
a = 21.2370 (5) Åθ = 0.4–28.3°
b = 6.3940 (1) ŵ = 0.21 mm1
c = 23.1045 (5) ÅT = 123 K
β = 100.585 (1)°Block, colourless
V = 3083.96 (11) Å30.30 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD with an APEXII detector
diffractometer
2526 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 28.2°, θmin = 1.8°
Detector resolution: 9 pixels mm-1h = 2728
φ and ω scansk = 88
7138 measured reflectionsl = 3030
3785 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0381P)2 + 7.2159P]
where P = (Fo2 + 2Fc2)/3
3785 reflections(Δ/σ)max < 0.001
366 parametersΔρmax = 0.35 e Å3
97 restraintsΔρmin = 0.42 e Å3
Crystal data top
C33H3F20N3O4V = 3083.96 (11) Å3
Mr = 885.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.2370 (5) ŵ = 0.21 mm1
b = 6.3940 (1) ÅT = 123 K
c = 23.1045 (5) Å0.30 × 0.18 × 0.16 mm
β = 100.585 (1)°
Data collection top
Bruker–Nonius KappaCCD with an APEXII detector
diffractometer
2526 reflections with I > 2σ(I)
7138 measured reflectionsRint = 0.039
3785 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05797 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
3785 reflectionsΔρmin = 0.42 e Å3
366 parameters
Special details top

Experimental. 13C NMR (CDCl3): δ (ppm) = 159.4, 149.1, 144.5, 142.4, 141.7, 138.7, 136.6, 123.8, 110.5.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.86727 (7)0.9378 (2)0.69841 (7)0.0376 (4)
F20.78577 (10)0.8370 (3)0.59909 (7)0.0616 (5)
F30.72661 (9)0.4583 (3)0.58930 (7)0.0579 (5)
F40.75118 (6)0.1782 (2)0.67885 (7)0.0362 (4)
F50.82680 (7)0.2875 (2)0.78079 (6)0.0345 (4)
O10.87489 (9)0.8475 (3)0.82339 (8)0.0380 (4)
N70.93905 (9)0.5589 (3)0.82488 (9)0.0330 (5)
N11.00000.5463 (4)0.75000.0278 (6)
C20.97130 (10)0.4368 (4)0.78664 (11)0.0303 (5)
C30.97017 (12)0.2207 (4)0.78901 (14)0.0392 (7)
H30.94960.14950.81650.047*
C41.00000.1126 (6)0.75000.0450 (11)
H41.00000.03600.75000.054*
C80.88798 (11)0.6875 (4)0.80002 (11)0.0295 (5)
C90.84960 (10)0.6158 (4)0.74248 (10)0.0253 (5)
C100.83779 (11)0.7515 (4)0.69504 (11)0.0293 (5)
C110.79688 (13)0.6999 (4)0.64361 (11)0.0373 (6)
C120.76727 (13)0.5075 (4)0.63878 (11)0.0368 (6)
C130.77919 (11)0.3668 (4)0.68450 (11)0.0294 (5)
C140.81941 (10)0.4222 (4)0.73576 (10)0.0257 (5)
O21.02137 (19)0.5421 (8)0.9007 (2)0.0851 (16)0.773 (2)
C150.9663 (3)0.5901 (8)0.8850 (2)0.0484 (16)0.773 (2)
F60.96821 (11)0.9929 (4)0.93716 (10)0.0545 (6)0.773 (2)
F70.90327 (13)1.0815 (4)1.02541 (11)0.0641 (8)0.773 (2)
F80.82644 (14)0.7899 (4)1.06022 (10)0.0548 (7)0.773 (2)
F90.81043 (14)0.4137 (4)1.00624 (12)0.0565 (7)0.773 (2)
F100.87435 (13)0.3237 (4)0.91753 (12)0.0533 (7)0.773 (2)
C160.92394 (13)0.6546 (4)0.92708 (10)0.0413 (10)0.773 (2)
C170.93101 (11)0.8490 (4)0.95442 (11)0.0429 (9)0.773 (2)
C180.89756 (12)0.8949 (3)0.99922 (10)0.0451 (9)0.773 (2)
C190.85705 (12)0.7464 (4)1.01668 (10)0.0432 (9)0.773 (2)
C200.84999 (14)0.5520 (4)0.98934 (13)0.0407 (11)0.773 (2)
C210.88343 (15)0.5061 (3)0.94454 (13)0.0381 (12)0.773 (2)
O2B1.0322 (5)0.4514 (16)0.8935 (5)0.041 (3)0.227 (2)
C15B0.9785 (6)0.524 (2)0.8821 (5)0.027 (4)0.227 (2)
F6B1.0454 (3)0.7631 (12)0.9763 (3)0.048 (2)0.227 (2)
F7B0.9953 (4)0.8597 (13)1.0711 (3)0.060 (2)0.227 (2)
F8B0.8734 (5)0.7549 (14)1.0761 (3)0.059 (2)0.227 (2)
F9B0.8023 (5)0.5329 (19)0.9872 (4)0.058 (3)0.227 (2)
F10B0.8522 (4)0.4215 (13)0.8935 (3)0.0397 (18)0.227 (2)
C16B0.9465 (4)0.6015 (14)0.9305 (3)0.029 (3)0.227 (2)
C17B0.9844 (3)0.7046 (14)0.9773 (3)0.040 (2)0.227 (2)
C18B0.9591 (4)0.7582 (14)1.0267 (3)0.043 (3)0.227 (2)
C19B0.8959 (4)0.7086 (15)1.0293 (3)0.042 (3)0.227 (2)
C20B0.8581 (3)0.6055 (17)0.9825 (4)0.034 (3)0.227 (2)
C21B0.8833 (4)0.5519 (16)0.9331 (4)0.025 (3)0.227 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0398 (8)0.0247 (7)0.0498 (9)0.0086 (6)0.0121 (7)0.0033 (7)
F20.0912 (14)0.0489 (11)0.0402 (9)0.0188 (10)0.0006 (9)0.0136 (8)
F30.0692 (12)0.0568 (12)0.0403 (9)0.0210 (10)0.0093 (8)0.0015 (9)
F40.0296 (7)0.0285 (8)0.0512 (9)0.0101 (6)0.0095 (6)0.0078 (7)
F50.0346 (7)0.0277 (8)0.0409 (8)0.0072 (6)0.0062 (6)0.0061 (6)
O10.0464 (11)0.0271 (9)0.0434 (10)0.0083 (8)0.0159 (8)0.0102 (8)
N70.0269 (10)0.0343 (12)0.0373 (11)0.0054 (9)0.0049 (9)0.0024 (10)
N10.0174 (12)0.0214 (14)0.0433 (17)0.0000.0021 (12)0.000
C20.0179 (10)0.0263 (12)0.0447 (14)0.0012 (10)0.0000 (10)0.0012 (11)
C30.0236 (12)0.0271 (13)0.0656 (19)0.0033 (10)0.0042 (12)0.0084 (13)
C40.0240 (17)0.0192 (17)0.089 (3)0.0000.0020 (19)0.000
C80.0276 (11)0.0245 (12)0.0386 (13)0.0081 (10)0.0118 (10)0.0014 (11)
C90.0219 (10)0.0237 (11)0.0331 (12)0.0003 (9)0.0118 (9)0.0031 (10)
C100.0304 (12)0.0201 (11)0.0400 (14)0.0056 (10)0.0140 (11)0.0031 (11)
C110.0457 (15)0.0356 (15)0.0319 (13)0.0049 (12)0.0105 (11)0.0059 (12)
C120.0383 (14)0.0381 (15)0.0329 (13)0.0081 (12)0.0033 (11)0.0051 (12)
C130.0256 (11)0.0241 (12)0.0408 (14)0.0059 (10)0.0121 (10)0.0057 (11)
C140.0228 (10)0.0230 (12)0.0330 (12)0.0016 (9)0.0095 (9)0.0003 (10)
O20.040 (2)0.106 (4)0.094 (3)0.032 (2)0.0279 (18)0.061 (3)
C150.035 (2)0.041 (3)0.062 (3)0.009 (2)0.011 (2)0.026 (2)
F60.0586 (14)0.0444 (14)0.0607 (15)0.0048 (12)0.0116 (12)0.0191 (12)
F70.0776 (17)0.0436 (14)0.0734 (17)0.0001 (13)0.0204 (13)0.0319 (13)
F80.0691 (17)0.0515 (15)0.0451 (13)0.0136 (13)0.0142 (12)0.0149 (11)
F90.0761 (18)0.0438 (16)0.0508 (16)0.0007 (15)0.0151 (14)0.0041 (13)
F100.0680 (17)0.0360 (14)0.0561 (16)0.0013 (12)0.0117 (13)0.0186 (12)
C160.038 (2)0.036 (2)0.043 (2)0.0126 (18)0.0102 (16)0.0140 (17)
C170.0409 (18)0.0379 (19)0.045 (2)0.0075 (16)0.0048 (16)0.0116 (17)
C180.050 (2)0.0365 (19)0.044 (2)0.0138 (17)0.0044 (16)0.0166 (17)
C190.047 (2)0.044 (2)0.0341 (18)0.0151 (18)0.0019 (16)0.0082 (17)
C200.055 (3)0.029 (2)0.033 (2)0.0114 (19)0.006 (2)0.0009 (18)
C210.048 (2)0.023 (2)0.037 (2)0.0125 (17)0.0080 (18)0.0023 (18)
O2B0.040 (5)0.030 (5)0.044 (5)0.004 (4)0.016 (4)0.017 (4)
C15B0.030 (8)0.027 (8)0.024 (6)0.005 (6)0.005 (5)0.009 (6)
F6B0.048 (4)0.050 (5)0.040 (4)0.003 (4)0.007 (3)0.011 (4)
F7B0.083 (6)0.049 (5)0.038 (4)0.001 (5)0.012 (4)0.003 (4)
F8B0.077 (6)0.065 (6)0.038 (4)0.022 (5)0.020 (4)0.007 (4)
F9B0.067 (6)0.076 (7)0.036 (5)0.012 (6)0.018 (4)0.005 (5)
F10B0.055 (5)0.038 (4)0.025 (3)0.013 (4)0.004 (3)0.006 (3)
C16B0.042 (6)0.023 (5)0.020 (4)0.001 (5)0.002 (4)0.000 (4)
C17B0.053 (6)0.031 (5)0.032 (5)0.001 (5)0.000 (4)0.003 (4)
C18B0.060 (6)0.039 (5)0.027 (5)0.007 (5)0.001 (5)0.002 (4)
C19B0.059 (6)0.045 (6)0.024 (5)0.006 (5)0.015 (5)0.001 (4)
C20B0.046 (6)0.021 (5)0.037 (5)0.005 (5)0.009 (5)0.014 (5)
C21B0.044 (6)0.009 (4)0.020 (5)0.003 (4)0.001 (4)0.002 (4)
Geometric parameters (Å, º) top
F1—C101.341 (3)C15—C161.498 (6)
F2—C111.339 (3)F6—C171.321 (3)
F3—C121.338 (3)F7—C181.333 (3)
F4—C131.340 (3)F8—C191.324 (3)
F5—C141.338 (3)F9—C201.327 (4)
O1—C81.213 (3)F10—C211.320 (3)
N7—C81.398 (3)C16—C171.3900
N7—C151.417 (6)C16—C211.3900
N7—C21.443 (3)C17—C181.3900
N7—C15B1.446 (12)C18—C191.3900
N1—C2i1.330 (3)C19—C201.3900
N1—C21.330 (3)C20—C211.3900
C2—C31.383 (4)O2B—C15B1.215 (14)
C3—C41.379 (3)C15B—C16B1.497 (13)
C3—H30.9500F6B—C17B1.353 (9)
C4—C3i1.379 (3)F7B—C18B1.332 (10)
C4—H40.9500F8B—C19B1.294 (9)
C8—C91.498 (3)F9B—C20B1.294 (12)
C9—C101.384 (3)F10B—C21B1.321 (9)
C9—C141.389 (3)C16B—C17B1.3900
C10—C111.377 (4)C16B—C21B1.3900
C11—C121.377 (4)C17B—C18B1.3900
C12—C131.375 (4)C18B—C19B1.3900
C13—C141.374 (3)C19B—C20B1.3900
O2—C151.200 (6)C20B—C21B1.3900
C8—N7—C15117.8 (3)C17—C16—C21120.0
C8—N7—C2119.1 (2)C17—C16—C15120.9 (3)
C15—N7—C2121.5 (3)C21—C16—C15118.5 (3)
C8—N7—C15B138.0 (6)F6—C17—C16120.4 (2)
C2—N7—C15B102.4 (6)F6—C17—C18119.6 (2)
C2i—N1—C2116.5 (3)C16—C17—C18120.0
N1—C2—C3124.4 (3)F7—C18—C19119.3 (2)
N1—C2—N7115.5 (2)F7—C18—C17120.7 (2)
C3—C2—N7120.2 (2)C19—C18—C17120.0
C4—C3—C2117.5 (3)F8—C19—C18119.6 (2)
C4—C3—H3121.3F8—C19—C20120.4 (2)
C2—C3—H3121.3C18—C19—C20120.0
C3—C4—C3i119.8 (4)F9—C20—C21121.1 (2)
C3—C4—H4120.1F9—C20—C19118.9 (2)
C3i—C4—H4120.1C21—C20—C19120.0
O1—C8—N7122.5 (2)F10—C21—C20119.2 (2)
O1—C8—C9121.4 (2)F10—C21—C16120.7 (2)
N7—C8—C9116.1 (2)C20—C21—C16120.0
C10—C9—C14117.2 (2)O2B—C15B—N7128.4 (11)
C10—C9—C8120.1 (2)O2B—C15B—C16B120.1 (11)
C14—C9—C8122.4 (2)N7—C15B—C16B111.4 (9)
F1—C10—C11118.5 (2)C17B—C16B—C21B120.0
F1—C10—C9119.7 (2)C17B—C16B—C15B117.5 (7)
C11—C10—C9121.8 (2)C21B—C16B—C15B122.0 (7)
F2—C11—C12120.6 (2)F6B—C17B—C18B117.5 (6)
F2—C11—C10120.0 (2)F6B—C17B—C16B122.5 (6)
C12—C11—C10119.4 (2)C18B—C17B—C16B120.0
F3—C12—C13120.1 (2)F7B—C18B—C17B119.8 (7)
F3—C12—C11119.5 (2)F7B—C18B—C19B120.2 (7)
C13—C12—C11120.4 (2)C17B—C18B—C19B120.0
F4—C13—C14120.7 (2)F8B—C19B—C20B120.6 (8)
F4—C13—C12119.9 (2)F8B—C19B—C18B119.4 (8)
C14—C13—C12119.4 (2)C20B—C19B—C18B120.0
F5—C14—C13118.0 (2)F9B—C20B—C19B120.8 (8)
F5—C14—C9120.1 (2)F9B—C20B—C21B118.5 (8)
C13—C14—C9121.8 (2)C19B—C20B—C21B120.0
O2—C15—N7117.4 (5)F10B—C21B—C20B120.3 (7)
O2—C15—C16122.8 (5)F10B—C21B—C16B118.6 (7)
N7—C15—C16119.3 (4)C20B—C21B—C16B120.0
C2i—N1—C2—C30.57 (19)C21—C16—C17—C180.0
C2i—N1—C2—N7178.4 (2)C15—C16—C17—C18171.1 (3)
C8—N7—C2—N162.2 (3)F6—C17—C18—F70.9 (3)
C15—N7—C2—N1103.0 (4)C16—C17—C18—F7179.2 (3)
C15B—N7—C2—N1111.0 (6)F6—C17—C18—C19178.4 (3)
C8—N7—C2—C3116.9 (3)C16—C17—C18—C190.0
C15—N7—C2—C378.0 (4)F7—C18—C19—F82.2 (3)
C15B—N7—C2—C370.0 (6)C17—C18—C19—F8178.6 (3)
N1—C2—C3—C41.1 (4)F7—C18—C19—C20179.3 (3)
N7—C2—C3—C4177.85 (18)C17—C18—C19—C200.0
C2—C3—C4—C3i0.50 (17)F8—C19—C20—F92.3 (3)
C15—N7—C8—O115.2 (4)C18—C19—C20—F9179.1 (3)
C2—N7—C8—O1150.5 (2)F8—C19—C20—C21178.6 (3)
C15B—N7—C8—O119.5 (9)C18—C19—C20—C210.0
C15—N7—C8—C9164.5 (3)F9—C20—C21—F101.7 (3)
C2—N7—C8—C929.8 (3)C19—C20—C21—F10177.5 (3)
C15B—N7—C8—C9160.2 (8)F9—C20—C21—C16179.1 (3)
O1—C8—C9—C1051.4 (3)C19—C20—C21—C160.0
N7—C8—C9—C10128.9 (2)C17—C16—C21—F10177.4 (3)
O1—C8—C9—C14122.1 (3)C15—C16—C21—F1011.2 (4)
N7—C8—C9—C1457.6 (3)C17—C16—C21—C200.0
C14—C9—C10—F1177.86 (19)C15—C16—C21—C20171.3 (3)
C8—C9—C10—F18.3 (3)C8—N7—C15B—O2B155.9 (9)
C14—C9—C10—C111.3 (4)C2—N7—C15B—O2B15.1 (14)
C8—C9—C10—C11172.6 (2)C8—N7—C15B—C16B20.5 (14)
F1—C10—C11—F22.1 (4)C2—N7—C15B—C16B168.5 (7)
C9—C10—C11—F2178.8 (2)O2B—C15B—C16B—C17B37.7 (14)
F1—C10—C11—C12178.5 (2)N7—C15B—C16B—C17B139.0 (8)
C9—C10—C11—C120.6 (4)O2B—C15B—C16B—C21B134.5 (10)
F2—C11—C12—F30.6 (4)N7—C15B—C16B—C21B48.8 (11)
C10—C11—C12—F3178.8 (3)C21B—C16B—C17B—F6B177.6 (9)
F2—C11—C12—C13179.6 (2)C15B—C16B—C17B—F6B10.0 (10)
C10—C11—C12—C131.1 (4)C21B—C16B—C17B—C18B0.0
F3—C12—C13—F41.6 (4)C15B—C16B—C17B—C18B172.3 (9)
C11—C12—C13—F4178.6 (2)F6B—C17B—C18B—F7B1.2 (9)
F3—C12—C13—C14177.9 (2)C16B—C17B—C18B—F7B179.0 (9)
C11—C12—C13—C142.0 (4)F6B—C17B—C18B—C19B177.8 (9)
F4—C13—C14—F53.7 (3)C16B—C17B—C18B—C19B0.0
C12—C13—C14—F5175.7 (2)F7B—C18B—C19B—F8B2.6 (11)
F4—C13—C14—C9179.26 (19)C17B—C18B—C19B—F8B178.4 (10)
C12—C13—C14—C91.3 (4)F7B—C18B—C19B—C20B179.0 (9)
C10—C9—C14—F5177.3 (2)C17B—C18B—C19B—C20B0.0
C8—C9—C14—F53.6 (3)F8B—C19B—C20B—F9B7.9 (12)
C10—C9—C14—C130.3 (3)C18B—C19B—C20B—F9B170.5 (12)
C8—C9—C14—C13173.4 (2)F8B—C19B—C20B—C21B178.4 (10)
C8—N7—C15—O2153.1 (5)C18B—C19B—C20B—C21B0.0
C2—N7—C15—O212.2 (7)F9B—C20B—C21B—F10B3.3 (10)
C8—N7—C15—C1634.5 (6)C19B—C20B—C21B—F10B167.5 (10)
C2—N7—C15—C16160.2 (3)F9B—C20B—C21B—C16B170.7 (11)
O2—C15—C16—C1773.5 (6)C19B—C20B—C21B—C16B0.0
N7—C15—C16—C17114.5 (4)C17B—C16B—C21B—F10B167.7 (10)
O2—C15—C16—C2197.7 (6)C15B—C16B—C21B—F10B4.3 (11)
N7—C15—C16—C2174.2 (5)C17B—C16B—C21B—C20B0.0
C21—C16—C17—F6178.4 (3)C15B—C16B—C21B—C20B172.0 (9)
C15—C16—C17—F610.5 (4)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1ii0.952.673.621 (5)180
C3—H3···O1ii0.952.523.318 (3)141
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC33H3F20N3O4
Mr885.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)21.2370 (5), 6.3940 (1), 23.1045 (5)
β (°) 100.585 (1)
V3)3083.96 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.18 × 0.16
Data collection
DiffractometerBruker–Nonius KappaCCD with an APEXII detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7138, 3785, 2526
Rint0.039
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.133, 1.05
No. of reflections3785
No. of parameters366
No. of restraints97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.952.673.621 (5)180
C3—H3···O1i0.952.523.318 (3)141
Symmetry code: (i) x, y1, z.
 

Acknowledgements

Academy Professor Kari Rissanen and the Academy of Finland (project No. 212588) are thanked for financial support to AV. The Polish Ministry of Science and Higher Education (grant No. N N204 174138 to BO) is also gratefully acknowledged.

References

First citationBruker (2008). COLLECT. Bruker AXS, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKovalevsky, A. Y., Shishkin, O. V. & Ponomarev, I. I. (1999). Acta Cryst. C55, 1914–1915.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Dobosz, R., Gawinecki, R., Kauppinen, R., Valkonen, A., Koivukorpi, J. & Rissanen, K. (2010a). J. Phys. Chem. A, 114, 10421–10426.  Web of Science PubMed Google Scholar
First citationOśmiałowski, B., Kolehmainen, E., Gawinecki, R., Kauppinen, R., Koivukorpi, J. & Valkonen, A. (2010b). Struct. Chem. 21, 1061–1067.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds