Download citation
Download citation
link to html
The asymmetric unit of the title compound, C16H18IO2+·CF3CO2, comprises an iodo­nium cation and a trifluoro­acetate anion, in which the F atoms are disordered over two postions of equal occupancy. The benzene rings are inclined at 87.76 (5)° to one another. Extremely short inter­molecular I...O contacts [2.807 (9) and 3.019 (13) Å] occur, due to strong electrostatic inter­actions between the I atom and two adjacent trifluoro­acetate counter-ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036379/hb2492sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036379/hb2492Isup2.hkl
Contains datablock I

CCDC reference: 657875

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.015 Å
  • Disorder in solvent or counterion
  • R factor = 0.056
  • wR factor = 0.169
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT431_ALERT_2_A Short Inter HL..A Contact I1 .. O3 .. 2.81 Ang.
Author Response: These are due to strong electrostatic intetactions between the cation and anion in the structure.

Alert level B PLAT431_ALERT_2_B Short Inter HL..A Contact I1 .. O3 .. 3.02 Ang.
Author Response: These are due to strong electrostatic intetactions between the cation and anion in the structure.

Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.77 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.20 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C17 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C18 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 30.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 15
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 72
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Diaryliodonium salts are useful in organic synthesis for arylation of organic and inorganic bases (Shah et al., 1997; Shah et al., 1998). The title compound, (I), (Fig. 1), is an important representative of such reagents. The iodine atom lies almost in the plane of both attached benzene rings with r.m.s. deviations of 0.022 (3) Å and 0.015 (3) Å from the C1—C6 and C9—C14 mean planes respectively. These rings are nearly orthogonal with a dihedral angle between them of 87.76 (5) °.

Each iodine atom interacts with two O atoms from adjacent trifloroacetate anions. Inversion symmetry then generates cyclic units (Fig. 2). Similar interactions have been observed previously in iodonium salts (Li & Jiang, 2007). The distances I1—O3i and I1—O3ii (i = x - 1, y + 1, z; ii = 1 - x, 1 - y, -z) in (I) are 3.019 (13) and 2.807 (9) Å, respectively.

Related literature top

For related literature, see: Shah et al. (1997, 1998); Li & Jiang (2007).

Experimental top

Sodium perborate tetrahydrate (35.39 g, 230 mmol) was added in batches to a stirred mixture of 2-iodo-4-methylanisole (5.71 g, 23 mmol) in acetic acid (100 ml) and acetic anhydride (50 ml) at 318 K. The suspension was stirred for 4.5 h at 318 K, diluted with 600 ml of water and extracted three times with dichloromethane. The organic extracts were dried with sodium sulfate, the solvent removed in vacuum and the residue crystallized from diethyl ether to obtain 2-methoxy-5-methylbis(acetoxy)iodobenzene.

Trifluoromethanesulfonic acid (0.63 ml, 8.2 mmol) was added dropwise to a stirred suspension of this product (1.5 g, 4.1 mmol) in dichloromethane (50 ml) at 263 K under nitrogen. The mixture was stirred for 30 min at 263 K, then at room temperature for a further 1.5 h, cooled to 263 K and 3-methylanisole (0.50 g, 4.1 mmol) added dropwise via syringe. The mixture was stirred at 263 K for 1 h and then at room temperature overnight, solvent was removed in vacuum and the residue crystallized from diethyl ether. Crystals suitable for X-ray analysis were obtained by slow evaporation in dichloromethane solution.

Refinement top

The fluorine atoms in the CF3 group were found to be disordered over two positions. Their occupancy factors refined to 0.512 (18) and 0.488 (18) respectively. The C—F distance was restrained to 1.37 (1) Å.

All the H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Diaryliodonium salts are useful in organic synthesis for arylation of organic and inorganic bases (Shah et al., 1997; Shah et al., 1998). The title compound, (I), (Fig. 1), is an important representative of such reagents. The iodine atom lies almost in the plane of both attached benzene rings with r.m.s. deviations of 0.022 (3) Å and 0.015 (3) Å from the C1—C6 and C9—C14 mean planes respectively. These rings are nearly orthogonal with a dihedral angle between them of 87.76 (5) °.

Each iodine atom interacts with two O atoms from adjacent trifloroacetate anions. Inversion symmetry then generates cyclic units (Fig. 2). Similar interactions have been observed previously in iodonium salts (Li & Jiang, 2007). The distances I1—O3i and I1—O3ii (i = x - 1, y + 1, z; ii = 1 - x, 1 - y, -z) in (I) are 3.019 (13) and 2.807 (9) Å, respectively.

For related literature, see: Shah et al. (1997, 1998); Li & Jiang (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Open bonds connect atoms of the minor disorder component of the CF3 group.
[Figure 2] Fig. 2. The crystal packing for (I). Dashed lines represent intermolecular I···O interactions.
(2-Methoxy-5-methylphenyl)(4-methoxy-2-methylphenyl)iodonium trifluoroacetate top
Crystal data top
C16H18IO2+·C2F3O2Z = 2
Mr = 482.22F(000) = 476
Triclinic, P1Dx = 1.626 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.211 (4) ÅCell parameters from 2102 reflections
b = 11.182 (6) Åθ = 2.4–24.9°
c = 12.200 (6) ŵ = 1.67 mm1
α = 93.690 (8)°T = 294 K
β = 107.874 (7)°Block, colourless
γ = 109.841 (8)°0.20 × 0.18 × 0.14 mm
V = 984.9 (8) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3425 independent reflections
Radiation source: fine-focus sealed tube2356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.731, Tmax = 0.800k = 1313
4842 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0996P)2 + 1.2747P]
where P = (Fo2 + 2Fc2)/3
3425 reflections(Δ/σ)max = 0.004
267 parametersΔρmax = 1.20 e Å3
72 restraintsΔρmin = 0.78 e Å3
Crystal data top
C16H18IO2+·C2F3O2γ = 109.841 (8)°
Mr = 482.22V = 984.9 (8) Å3
Triclinic, P1Z = 2
a = 8.211 (4) ÅMo Kα radiation
b = 11.182 (6) ŵ = 1.67 mm1
c = 12.200 (6) ÅT = 294 K
α = 93.690 (8)°0.20 × 0.18 × 0.14 mm
β = 107.874 (7)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3425 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2356 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.800Rint = 0.026
4842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05672 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.01Δρmax = 1.20 e Å3
3425 reflectionsΔρmin = 0.78 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.19140 (9)0.97059 (6)0.12590 (4)0.0615 (3)
O10.6312 (9)0.6100 (7)0.1571 (7)0.082 (2)
O20.1034 (10)0.8681 (8)0.3388 (6)0.079 (2)
C10.3292 (11)0.8419 (7)0.1341 (6)0.0426 (18)
C20.5130 (12)0.8923 (9)0.1423 (8)0.057 (2)
H20.57060.98020.14400.068*
C30.6100 (12)0.8126 (10)0.1480 (9)0.065 (2)
H30.73240.84540.15200.078*
C40.5232 (11)0.6840 (9)0.1477 (8)0.054 (2)
C50.3393 (11)0.6320 (8)0.1396 (7)0.0465 (18)
H50.28360.54420.13880.056*
C60.2382 (10)0.7105 (8)0.1327 (6)0.0452 (19)
C70.0350 (12)0.6463 (10)0.1190 (10)0.074 (3)
H7A0.00330.55490.11610.111*
H7B0.04040.66070.04770.111*
H7C0.01430.68270.18440.111*
C80.5516 (17)0.4762 (11)0.1592 (13)0.096 (4)
H8A0.51540.46630.22690.144*
H8B0.64050.43740.16270.144*
H8C0.44500.43460.08950.144*
C90.3077 (12)1.0572 (9)0.3044 (7)0.055 (2)
C100.2357 (14)0.9876 (11)0.3836 (7)0.063 (2)
C110.3145 (17)1.0517 (13)0.5011 (8)0.080 (3)
H110.27571.00990.55730.096*
C120.4429 (16)1.1706 (13)0.5338 (8)0.079 (3)
H120.48721.20990.61220.095*
C130.5142 (16)1.2393 (12)0.4585 (10)0.084 (4)
C140.4398 (14)1.1769 (10)0.3386 (9)0.066 (3)
H140.48281.21910.28380.079*
C150.658 (2)1.3747 (12)0.4951 (13)0.119 (5)
H15A0.60701.43320.51850.179*
H15B0.69671.39970.43040.179*
H15C0.76271.37770.55970.179*
C160.0146 (19)0.8018 (14)0.4130 (12)0.107 (4)
H16A0.10410.78810.47750.161*
H16B0.07860.71980.36910.161*
H16C0.04180.85280.44230.161*
F10.964 (3)0.3874 (13)0.2500 (18)0.143 (8)0.488 (18)
F20.813 (2)0.208 (2)0.282 (2)0.167 (9)0.488 (18)
F31.101 (2)0.2949 (18)0.3656 (11)0.124 (7)0.488 (18)
F1'0.794 (2)0.267 (2)0.2015 (18)0.157 (9)0.512 (18)
F2'0.924 (3)0.1712 (17)0.3198 (16)0.153 (8)0.512 (18)
F3'1.052 (4)0.3757 (18)0.336 (2)0.269 (18)0.512 (18)
C171.0118 (16)0.2125 (12)0.1657 (9)0.068 (3)
C180.9657 (16)0.2663 (10)0.2565 (10)0.110 (4)
O30.9273 (16)0.1057 (9)0.1183 (8)0.115 (3)
O41.1470 (18)0.2865 (18)0.1514 (14)0.210 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0862 (5)0.0779 (5)0.0292 (3)0.0555 (4)0.0053 (3)0.0064 (2)
O10.063 (4)0.072 (5)0.125 (7)0.042 (4)0.033 (4)0.019 (4)
O20.085 (5)0.092 (5)0.046 (4)0.022 (4)0.016 (4)0.010 (4)
C10.054 (5)0.045 (5)0.032 (4)0.027 (4)0.010 (3)0.008 (3)
C20.057 (6)0.054 (5)0.059 (5)0.019 (4)0.022 (4)0.008 (4)
C30.046 (5)0.069 (7)0.082 (7)0.020 (5)0.027 (5)0.014 (5)
C40.045 (5)0.060 (6)0.059 (5)0.027 (4)0.013 (4)0.009 (4)
C50.050 (5)0.048 (5)0.042 (4)0.021 (4)0.014 (4)0.006 (4)
C60.038 (4)0.065 (6)0.033 (4)0.025 (4)0.008 (3)0.003 (3)
C70.048 (5)0.071 (7)0.091 (7)0.018 (5)0.018 (5)0.007 (5)
C80.108 (9)0.078 (8)0.138 (12)0.064 (7)0.056 (9)0.035 (7)
C90.069 (6)0.065 (6)0.033 (4)0.046 (5)0.001 (4)0.008 (4)
C100.075 (6)0.092 (8)0.034 (4)0.053 (6)0.012 (4)0.009 (5)
C110.100 (8)0.122 (10)0.039 (5)0.072 (8)0.019 (6)0.014 (6)
C120.096 (8)0.105 (9)0.027 (5)0.050 (7)0.001 (5)0.011 (5)
C130.089 (7)0.087 (8)0.055 (6)0.048 (7)0.013 (6)0.026 (6)
C140.081 (7)0.061 (6)0.056 (5)0.043 (6)0.007 (5)0.002 (5)
C150.131 (11)0.078 (9)0.116 (11)0.037 (8)0.009 (9)0.015 (8)
C160.104 (9)0.138 (12)0.087 (9)0.040 (9)0.045 (8)0.032 (9)
F10.169 (12)0.106 (10)0.157 (12)0.084 (9)0.029 (8)0.005 (7)
F20.150 (11)0.206 (14)0.164 (13)0.053 (8)0.104 (10)0.006 (8)
F30.142 (10)0.134 (11)0.087 (9)0.056 (8)0.029 (7)0.000 (7)
F1'0.156 (11)0.165 (12)0.189 (13)0.087 (9)0.081 (9)0.030 (8)
F2'0.177 (12)0.185 (12)0.108 (10)0.052 (8)0.078 (9)0.050 (8)
F3'0.28 (2)0.25 (2)0.27 (2)0.110 (12)0.083 (12)0.029 (10)
C170.070 (7)0.085 (8)0.056 (6)0.040 (6)0.016 (5)0.032 (6)
C180.140 (13)0.081 (9)0.095 (10)0.028 (9)0.044 (10)0.008 (7)
O30.175 (9)0.084 (6)0.072 (5)0.055 (6)0.022 (6)0.008 (5)
O40.131 (9)0.31 (2)0.211 (16)0.068 (12)0.091 (11)0.154 (15)
Geometric parameters (Å, º) top
I1—C12.101 (7)C10—C111.404 (13)
I1—C92.102 (8)C11—C121.327 (16)
O1—C41.390 (10)C11—H110.9300
O1—C81.420 (13)C12—C131.376 (17)
O2—C101.349 (13)C12—H120.9300
O2—C161.423 (14)C13—C141.426 (14)
C1—C21.389 (12)C13—C151.504 (18)
C1—C61.400 (11)C14—H140.9300
C2—C31.375 (12)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.371 (13)C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.391 (12)C16—H16B0.9600
C5—C61.388 (11)C16—H16C0.9600
C5—H50.9300F1—C181.365 (8)
C6—C71.526 (12)F2—C181.343 (8)
C7—H7A0.9600F3—C181.380 (8)
C7—H7B0.9600F1'—C181.367 (8)
C7—H7C0.9600F2'—C181.366 (8)
C8—H8A0.9600F3'—C181.331 (9)
C8—H8B0.9600C17—O31.159 (13)
C8—H8C0.9600C17—O41.209 (15)
C9—C141.344 (14)C17—C181.435 (15)
C9—C101.422 (14)
C1—I1—C997.7 (3)C13—C12—H12118.0
C4—O1—C8118.9 (7)C12—C13—C14116.3 (11)
C10—O2—C16118.5 (9)C12—C13—C15124.0 (11)
C2—C1—C6121.7 (7)C14—C13—C15119.7 (13)
C2—C1—I1117.6 (6)C9—C14—C13120.1 (11)
C6—C1—I1120.7 (5)C9—C14—H14119.9
C3—C2—C1120.1 (8)C13—C14—H14119.9
C3—C2—H2120.0C13—C15—H15A109.5
C1—C2—H2120.0C13—C15—H15B109.5
C4—C3—C2118.9 (8)H15A—C15—H15B109.5
C4—C3—H3120.5C13—C15—H15C109.5
C2—C3—H3120.5H15A—C15—H15C109.5
C3—C4—O1115.7 (7)H15B—C15—H15C109.5
C3—C4—C5121.7 (7)O2—C16—H16A109.5
O1—C4—C5122.6 (8)O2—C16—H16B109.5
C6—C5—C4120.4 (8)H16A—C16—H16B109.5
C6—C5—H5119.8O2—C16—H16C109.5
C4—C5—H5119.8H16A—C16—H16C109.5
C5—C6—C1117.3 (7)H16B—C16—H16C109.5
C5—C6—C7117.6 (8)O3—C17—O4126.6 (15)
C1—C6—C7125.0 (7)O3—C17—C18120.0 (11)
C6—C7—H7A109.5O4—C17—C18113.3 (14)
C6—C7—H7B109.5F3'—C18—F2103 (2)
H7A—C7—H7B109.5F3'—C18—F148.9 (12)
C6—C7—H7C109.5F2—C18—F1102.0 (12)
H7A—C7—H7C109.5F3'—C18—F2'104.7 (13)
H7B—C7—H7C109.5F2—C18—F2'48.5 (11)
O1—C8—H8A109.5F1—C18—F2'139.8 (16)
O1—C8—H8B109.5F3'—C18—F1'104.1 (12)
H8A—C8—H8B109.5F2—C18—F1'53.2 (11)
O1—C8—H8C109.5F1—C18—F1'66.5 (11)
H8A—C8—H8C109.5F2'—C18—F1'100.2 (11)
H8B—C8—H8C109.5F3'—C18—F349.9 (12)
C14—C9—C10122.7 (8)F2—C18—F3101.0 (11)
C14—C9—I1119.4 (7)F1—C18—F398.4 (10)
C10—C9—I1117.8 (7)F2'—C18—F368.2 (11)
O2—C10—C11127.4 (10)F1'—C18—F3142.2 (15)
O2—C10—C9117.2 (8)F3'—C18—C17132.8 (17)
C11—C10—C9115.4 (11)F2—C18—C17124.5 (13)
C12—C11—C10121.5 (11)F1—C18—C17114.4 (12)
C12—C11—H11119.2F2'—C18—C17105.6 (12)
C10—C11—H11119.2F1'—C18—C17105.1 (12)
C11—C12—C13123.9 (9)F3—C18—C17112.7 (11)
C11—C12—H12118.0
C9—I1—C1—C276.8 (7)C14—C9—C10—C111.1 (12)
C9—I1—C1—C6102.4 (6)I1—C9—C10—C11178.1 (6)
C6—C1—C2—C30.7 (13)O2—C10—C11—C12179.2 (9)
I1—C1—C2—C3180.0 (7)C9—C10—C11—C122.1 (14)
C1—C2—C3—C41.3 (14)C10—C11—C12—C132.3 (17)
C2—C3—C4—O1178.2 (9)C11—C12—C13—C141.3 (16)
C2—C3—C4—C51.2 (15)C11—C12—C13—C15179.3 (11)
C8—O1—C4—C3179.0 (10)C10—C9—C14—C130.2 (13)
C8—O1—C4—C50.4 (14)I1—C9—C14—C13177.2 (7)
C3—C4—C5—C60.6 (13)C12—C13—C14—C90.2 (14)
O1—C4—C5—C6178.7 (8)C15—C13—C14—C9178.3 (10)
C4—C5—C6—C10.1 (11)O3—C17—C18—F3'168.4 (17)
C4—C5—C6—C7177.6 (8)O4—C17—C18—F3'8 (2)
C2—C1—C6—C50.1 (11)O3—C17—C18—F29.8 (19)
I1—C1—C6—C5179.4 (5)O4—C17—C18—F2173.7 (16)
C2—C1—C6—C7177.4 (9)O3—C17—C18—F1135.9 (13)
I1—C1—C6—C73.4 (11)O4—C17—C18—F147.6 (15)
C1—I1—C9—C14104.3 (7)O3—C17—C18—F2'40.2 (15)
C1—I1—C9—C1078.6 (7)O4—C17—C18—F2'136.3 (13)
C16—O2—C10—C118.0 (15)O3—C17—C18—F1'65.2 (14)
C16—O2—C10—C9173.3 (9)O4—C17—C18—F1'118.3 (14)
C14—C9—C10—O2180.0 (8)O3—C17—C18—F3112.7 (13)
I1—C9—C10—O23.0 (10)O4—C17—C18—F363.8 (14)

Experimental details

Crystal data
Chemical formulaC16H18IO2+·C2F3O2
Mr482.22
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.211 (4), 11.182 (6), 12.200 (6)
α, β, γ (°)93.690 (8), 107.874 (7), 109.841 (8)
V3)984.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.731, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
4842, 3425, 2356
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.01
No. of reflections3425
No. of parameters267
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.78

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds