Download citation
Download citation
link to html
In the title compound, C19H18O4, the carboxyl group lies on the opposite side of the cyclo­propane ring to the other substituents. Mol­ecules associate via (...HOC=O)2 synthons around centres of symmetry and are linked into double layers by cooperative C—H...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030838/hg2238sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030838/hg2238Isup2.hkl
Contains datablock I

CCDC reference: 655061

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.048
  • wR factor = 0.149
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C1 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound (I) was synthesized in the course of an investigation of selective deprotections of cyclopropanes generated through the reaction of 1,2-dioxines and stabilized phosphorus ylides (Avery et al., 2000, 2001). The molecular structure (Fig. 1) shows the carboxylic acid functional group at the C1 atom to lie to the opposite side of the cyclopropane ring to the substituents at the C2 and C3 atoms. Centrosymmetrically related molecules are connected by the familiar {···HOC=O}2 synthon and these are connected into a double layer via C—H···O contacts (Table 1). The double layers thus formed stack along the c-direction, being separated by hydrophobic interactions (Fig. 2).

Related literature top

For related literature, see: Avery et al. (2000, 2001).

Experimental top

To a solution of potassium carbonate (335 mg, 1.31 mmol) in water (10 ml) was added a solution of ±(1R,2S,3R)-phenyl 2-(2-(benzyloxy)-2-oxoethyl)-3- phenylcyclopropanecarboxylate (950 mg, 2.46 mmol) in acetone (10 ml). The mixture was allowed to stir overnight after which time the acetone was removed in vacuo and the aqueous solution acidified (conc. HCl). The solution was then extracted with ethyl acetate (3 x 20 ml), dried (MgSO4), filtered and the volatiles removed in vacuo to give a crude solid consisting of (I) and phenol. Phenol was removed by sublimation and the crude acid recrystallized (dichloromethane/hexanes) to give (I) (701 mg, 92%) as a colourless solid. M.p 409–411 K. Elemental analysis found: C 73.50, H, 5.97%; C19H18O4 requires: C 73.53, H, 5.85%. IR: 2538, 1732, 1682, 1603, 1449, 1240, 1170, 961 cm-1. 1H NMR (CDCl3, 300 MHz) δ 2.03 (t, J = 3.9 Hz, 1H), 2.15–2.26 (m, 3H), 2.91–3.00 (m, 1H), 5.03–5.12 (m, 2H), 7.15–7.34 (m, 10H), 12.20 (bs, 1H). 13C NMR (CDCl3, 75 MHz) δ 24.5, 24.6, 31.3, 32.7, 66.4, 127.0, 128.2, 128.2, 128.4, 128.5, 128.8, 134.8, 135.6, 171.5, 179.6.

Refinement top

All C-bound H atoms were included in the riding-model approximation, with C—H = 0.94 to 0.99 Å, and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C). The hydroxyl-H atoms were located from a difference map and included so that O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Structure description top

The title compound (I) was synthesized in the course of an investigation of selective deprotections of cyclopropanes generated through the reaction of 1,2-dioxines and stabilized phosphorus ylides (Avery et al., 2000, 2001). The molecular structure (Fig. 1) shows the carboxylic acid functional group at the C1 atom to lie to the opposite side of the cyclopropane ring to the substituents at the C2 and C3 atoms. Centrosymmetrically related molecules are connected by the familiar {···HOC=O}2 synthon and these are connected into a double layer via C—H···O contacts (Table 1). The double layers thus formed stack along the c-direction, being separated by hydrophobic interactions (Fig. 2).

For related literature, see: Avery et al. (2000, 2001).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of the unit-cell contents of (I) highlighting the stacking of double layers along the c-direction. Hydrogen bonds are shown as orange-dashed lines. Colour code: red (oxygen), grey (carbon) and green (hydrogen).
(+)-(1R,2S,3R)-2-[(Benzyloxycarbonyl)methyl]-3-phenylcyclopropanecarboxylic acid top
Crystal data top
C19H18O4Z = 2
Mr = 310.33F(000) = 328
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 5.5550 (5) ÅCell parameters from 1829 reflections
b = 8.9606 (8) Åθ = 2.5–29.3°
c = 16.6586 (16) ŵ = 0.09 mm1
α = 101.698 (2)°T = 223 K
β = 98.907 (2)°Prism, colourless
γ = 92.186 (2)°0.39 × 0.09 × 0.08 mm
V = 800.11 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2831 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 1.3°
ω and φ scansh = 67
5723 measured reflectionsk = 1111
3668 independent reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0829P)2 + 0.0916P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C19H18O4γ = 92.186 (2)°
Mr = 310.33V = 800.11 (13) Å3
Triclinic, P1Z = 2
a = 5.5550 (5) ÅMo Kα radiation
b = 8.9606 (8) ŵ = 0.09 mm1
c = 16.6586 (16) ÅT = 223 K
α = 101.698 (2)°0.39 × 0.09 × 0.08 mm
β = 98.907 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2831 reflections with I > 2σ(I)
5723 measured reflectionsRint = 0.015
3668 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.149H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
3668 reflectionsΔρmin = 0.25 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6349 (2)0.36870 (14)0.37643 (10)0.0613 (4)
O20.3799 (2)0.16367 (12)0.36059 (7)0.0399 (3)
O30.1845 (2)0.82536 (12)0.46136 (7)0.0394 (3)
H3O0.18010.91420.49030.059*
O40.1916 (2)0.90033 (12)0.44703 (8)0.0452 (3)
C10.0252 (3)0.65051 (15)0.38033 (9)0.0302 (3)
H10.13080.58630.36520.036*
C20.2544 (3)0.56716 (15)0.39526 (9)0.0303 (3)
H20.38830.62590.43730.036*
C30.1967 (3)0.62665 (16)0.31702 (9)0.0310 (3)
H30.29830.72010.31740.037*
C40.0177 (3)0.80346 (16)0.43215 (9)0.0304 (3)
C50.2214 (3)0.40048 (16)0.39673 (10)0.0329 (3)
H5A0.19210.39080.45200.040*
H5B0.07660.35470.35650.040*
C60.4366 (3)0.31359 (16)0.37669 (9)0.0311 (3)
C70.5724 (3)0.06418 (18)0.34375 (11)0.0406 (4)
H7A0.55730.02230.37090.049*
H7B0.73060.12020.36780.049*
C80.5662 (3)0.00447 (18)0.25231 (10)0.0383 (4)
C90.3839 (4)0.0327 (2)0.19188 (12)0.0541 (5)
H90.25930.09520.20710.065*
C100.3848 (4)0.0311 (3)0.10899 (13)0.0675 (6)
H100.26140.01040.06820.081*
C110.5631 (4)0.1240 (3)0.08567 (13)0.0633 (6)
H110.56090.16780.02930.076*
C120.7448 (4)0.1528 (3)0.14513 (14)0.0658 (6)
H120.86760.21640.12950.079*
C130.7477 (4)0.0882 (2)0.22818 (12)0.0528 (5)
H130.87400.10730.26860.063*
C140.1254 (3)0.52696 (17)0.23264 (9)0.0353 (3)
C150.2719 (4)0.5390 (2)0.17366 (11)0.0518 (5)
H150.40930.60940.18770.062*
C160.2179 (4)0.4483 (3)0.09420 (12)0.0691 (6)
H160.31820.45820.05470.083*
C170.0195 (4)0.3443 (3)0.07291 (12)0.0686 (6)
H170.01640.28290.01910.082*
C180.1257 (4)0.3304 (3)0.13032 (13)0.0642 (6)
H180.26070.25820.11600.077*
C190.0758 (3)0.4221 (2)0.20976 (11)0.0493 (4)
H190.17940.41280.24830.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (7)0.0366 (7)0.1152 (12)0.0015 (5)0.0257 (7)0.0124 (7)
O20.0382 (6)0.0256 (5)0.0574 (7)0.0056 (4)0.0150 (5)0.0061 (5)
O30.0428 (6)0.0286 (5)0.0475 (7)0.0068 (5)0.0182 (5)0.0005 (5)
O40.0479 (7)0.0284 (6)0.0572 (7)0.0027 (5)0.0216 (5)0.0047 (5)
C10.0340 (7)0.0239 (7)0.0332 (7)0.0029 (5)0.0096 (6)0.0038 (5)
C20.0310 (7)0.0268 (7)0.0324 (7)0.0032 (5)0.0071 (5)0.0033 (5)
C30.0358 (7)0.0248 (7)0.0330 (7)0.0025 (6)0.0103 (6)0.0042 (5)
C40.0380 (8)0.0259 (7)0.0298 (7)0.0062 (6)0.0101 (6)0.0074 (5)
C50.0323 (7)0.0287 (7)0.0406 (8)0.0048 (6)0.0107 (6)0.0096 (6)
C60.0326 (7)0.0279 (7)0.0339 (7)0.0036 (6)0.0069 (6)0.0082 (6)
C70.0439 (9)0.0315 (8)0.0479 (9)0.0129 (7)0.0101 (7)0.0084 (7)
C80.0393 (8)0.0319 (8)0.0453 (9)0.0024 (6)0.0102 (7)0.0093 (6)
C90.0476 (10)0.0559 (11)0.0556 (11)0.0108 (9)0.0034 (8)0.0068 (9)
C100.0643 (13)0.0805 (15)0.0504 (11)0.0058 (11)0.0047 (10)0.0078 (10)
C110.0728 (14)0.0686 (14)0.0447 (11)0.0010 (11)0.0141 (10)0.0006 (9)
C120.0713 (14)0.0698 (14)0.0608 (12)0.0204 (11)0.0308 (11)0.0066 (10)
C130.0532 (11)0.0608 (12)0.0489 (10)0.0212 (9)0.0154 (8)0.0132 (9)
C140.0412 (8)0.0342 (8)0.0311 (7)0.0082 (6)0.0088 (6)0.0052 (6)
C150.0569 (11)0.0581 (11)0.0412 (9)0.0003 (9)0.0191 (8)0.0048 (8)
C160.0796 (15)0.0891 (16)0.0400 (10)0.0082 (13)0.0283 (10)0.0025 (10)
C170.0748 (14)0.0848 (16)0.0350 (10)0.0105 (12)0.0057 (9)0.0112 (10)
C180.0590 (12)0.0728 (14)0.0472 (11)0.0076 (10)0.0005 (9)0.0099 (9)
C190.0467 (9)0.0589 (11)0.0369 (9)0.0040 (8)0.0085 (7)0.0018 (8)
Geometric parameters (Å, º) top
O1—C61.1910 (18)C8—C91.382 (3)
O2—C61.3309 (18)C9—C101.384 (3)
O2—C71.4424 (18)C9—H90.9400
O3—C41.2978 (18)C10—C111.369 (3)
O3—H3O0.8401C10—H100.9400
O4—C41.2338 (18)C11—C121.371 (3)
C1—C41.4701 (19)C11—H110.9400
C1—C21.514 (2)C12—C131.385 (3)
C1—C31.5168 (19)C12—H120.9400
C1—H10.9900C13—H130.9400
C2—C31.500 (2)C14—C191.386 (2)
C2—C51.5035 (19)C14—C151.387 (2)
C2—H20.9900C15—C161.387 (3)
C3—C141.491 (2)C15—H150.9400
C3—H30.9900C16—C171.369 (3)
C5—C61.495 (2)C16—H160.9400
C5—H5A0.9800C17—C181.364 (3)
C5—H5B0.9800C17—H170.9400
C7—C81.503 (2)C18—C191.390 (2)
C7—H7A0.9800C18—H180.9400
C7—H7B0.9800C19—H190.9400
C8—C131.386 (2)
C6—O2—C7117.49 (12)H7A—C7—H7B107.8
C4—O3—H3O110.5C13—C8—C9118.80 (17)
C4—C1—C2117.76 (12)C13—C8—C7117.95 (15)
C4—C1—C3119.46 (12)C9—C8—C7123.20 (15)
C2—C1—C359.35 (9)C10—C9—C8120.03 (18)
C4—C1—H1116.1C10—C9—H9120.0
C2—C1—H1116.1C8—C9—H9120.0
C3—C1—H1116.1C11—C10—C9120.9 (2)
C3—C2—C5122.65 (12)C11—C10—H10119.6
C3—C2—C160.43 (9)C9—C10—H10119.6
C5—C2—C1117.10 (12)C10—C11—C12119.57 (19)
C3—C2—H2115.2C10—C11—H11120.2
C5—C2—H2115.2C12—C11—H11120.2
C1—C2—H2115.2C11—C12—C13120.13 (19)
C14—C3—C2123.86 (12)C11—C12—H12119.9
C14—C3—C1122.54 (13)C13—C12—H12119.9
C2—C3—C160.22 (9)C8—C13—C12120.59 (18)
C14—C3—H3113.4C8—C13—H13119.7
C2—C3—H3113.4C12—C13—H13119.7
C1—C3—H3113.4C19—C14—C15118.04 (15)
O4—C4—O3123.72 (13)C19—C14—C3124.23 (14)
O4—C4—C1122.19 (13)C15—C14—C3117.73 (15)
O3—C4—C1114.08 (13)C14—C15—C16120.75 (19)
C6—C5—C2113.23 (12)C14—C15—H15119.6
C6—C5—H5A108.9C16—C15—H15119.6
C2—C5—H5A108.9C17—C16—C15120.40 (19)
C6—C5—H5B108.9C17—C16—H16119.8
C2—C5—H5B108.9C15—C16—H16119.8
H5A—C5—H5B107.7C18—C17—C16119.61 (18)
O1—C6—O2123.53 (14)C18—C17—H17120.2
O1—C6—C5125.52 (14)C16—C17—H17120.2
O2—C6—C5110.94 (12)C17—C18—C19120.6 (2)
O2—C7—C8112.59 (13)C17—C18—H18119.7
O2—C7—H7A109.1C19—C18—H18119.7
C8—C7—H7A109.1C14—C19—C18120.60 (17)
O2—C7—H7B109.1C14—C19—H19119.7
C8—C7—H7B109.1C18—C19—H19119.7
C4—C1—C2—C3109.52 (14)O2—C7—C8—C94.8 (2)
C4—C1—C2—C5136.49 (13)C13—C8—C9—C100.0 (3)
C3—C1—C2—C5113.99 (14)C7—C8—C9—C10177.41 (18)
C5—C2—C3—C146.3 (2)C8—C9—C10—C110.8 (3)
C1—C2—C3—C14111.25 (16)C9—C10—C11—C120.8 (4)
C5—C2—C3—C1104.97 (15)C10—C11—C12—C130.0 (4)
C4—C1—C3—C14139.96 (14)C9—C8—C13—C120.8 (3)
C2—C1—C3—C14113.35 (15)C7—C8—C13—C12176.76 (18)
C4—C1—C3—C2106.68 (15)C11—C12—C13—C80.8 (3)
C2—C1—C4—O444.4 (2)C2—C3—C14—C1958.9 (2)
C3—C1—C4—O424.3 (2)C1—C3—C14—C1914.8 (2)
C2—C1—C4—O3134.54 (13)C2—C3—C14—C15120.33 (17)
C3—C1—C4—O3156.83 (13)C1—C3—C14—C15166.00 (15)
C3—C2—C5—C685.53 (17)C19—C14—C15—C160.1 (3)
C1—C2—C5—C6156.23 (12)C3—C14—C15—C16179.20 (18)
C7—O2—C6—O11.3 (2)C14—C15—C16—C170.5 (4)
C7—O2—C6—C5177.29 (13)C15—C16—C17—C180.1 (4)
C2—C5—C6—O115.3 (2)C16—C17—C18—C190.8 (4)
C2—C5—C6—O2166.14 (12)C15—C14—C19—C181.0 (3)
C6—O2—C7—C898.97 (16)C3—C14—C19—C18178.22 (18)
O2—C7—C8—C13177.73 (15)C17—C18—C19—C141.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.841.782.6224 (16)176
C1—H1···O1ii0.992.363.249 (2)149
C5—H5B···O1ii0.982.533.219 (2)127
C7—H7A···O3iii0.982.553.368 (2)141
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H18O4
Mr310.33
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)5.5550 (5), 8.9606 (8), 16.6586 (16)
α, β, γ (°)101.698 (2), 98.907 (2), 92.186 (2)
V3)800.11 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5723, 3668, 2831
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.06
No. of reflections3668
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.841.782.6224 (16)176
C1—H1···O1ii0.992.363.249 (2)149
C5—H5B···O1ii0.982.533.219 (2)127
C7—H7A···O3iii0.982.553.368 (2)141
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds