1887

Abstract

possesses a haem-uptake system homologous to that of and The system consists of two ligand-binding proteins (Shr and Shp) and proteins (HtsA–C) with homology to an ABC transporter. The haem-uptake system of differs from that of and in that Shr is truncated by two-thirds. This study focused on the SeShr, SeShp and SeHtsA proteins of . Analysis of s, and knockout mutants showed that all three proteins were expressed and that expression was upregulated under conditions of iron limitation. SeShr possesses no membrane-/cell wall-spanning sequences and was shown to be secreted. Both SeShp and SeHtsA were confirmed to be envelope-associated. Recombinant SeShp and SeHtsA proteins have been previously shown to bind haem and SeHtsA could capture haem from SeShp. This report extends these studies and shows that both SeShp and SeHtsA can sequester haem from haemoglobin but not from haemoglobin–haptoglobin complexes. Like full-length Shr, SeShr possesses haemoglobin and haemoglobin–haptoglobin binding ability but unlike full-length Shr, it lacks haem- or fibronectin-binding capabilities. Analysis of SeShr truncates showed that residues within and upstream of the near transporter (NEAT) domain are required for this ligand binding. Structural predictions suggest that truncation of NEAT1 in SeShr accounts for its impaired ability to bind haem. Haem and haemoglobin restored to almost normal the impaired growth rates of wild-type cultured under iron-limiting conditions. However, no difference in the growth rates of wild-type and mutants could be detected under the growth conditions tested.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036087-0
2010-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1824.html?itemId=/content/journal/micro/10.1099/mic.0.036087-0&mimeType=html&fmt=ahah

References

  1. Andrade M. A., Ciccarelli F. D., Perez-Iratxeta C., Bork P. 2002; NEAT- a domain duplicated in genes near the components of a putative Fe3+ siderophore transporter from Gram-positive pathogenic bacteria. Genome Biol 3: RESEARCH0047
    [Google Scholar]
  2. Aranda R. IV, Worley C. E., Liu M., Bitto E., Cates M. S., Olson J. S., Lei B., Phillips G. N. Jr 2007; Bis-methionyl coordination in the crystal structure of the heme-binding domain of the streptococcal cell surface protein Shp. J Mol Biol 374:374–383
    [Google Scholar]
  3. Bates C. S., Montaňez G. E., Woods C. R., Vincent R. M., Eichenbaum Z. 2003; Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect Immun 71:1042–1055
    [Google Scholar]
  4. Chanter N., Collins N., Holmes N., Binn M., Mumford J. 1997; Characterization of the Lancefield group C streptococcus 16S–23S RNA gene intergenic spacer and its potential for identification and sub-specific typing. Epidemiol Infect 118:125–135
    [Google Scholar]
  5. Clarke S. R., Witshire M. D., Foster S. J. 2004; IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51:1509–1519
    [Google Scholar]
  6. Clarke S. R., Andre G., Walsh E. J., Dufrene Y. F., Foster T. J., Foster S. J. 2009; Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 77:2408–2416
    [Google Scholar]
  7. Dale S. E., Doherty-Kirby A., Lajoie G., Heinrichs D. E. 2004; Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72:29–37
    [Google Scholar]
  8. Dryla A., Hoffmann B., Gelbmann D., Giefing C., Hanner M., Meinke A., Anderson A. S., Koppensteiner W., Konrat R. other authors 2007; High-affinity binding of the Staphylococcal HarA protein to haptoglobin and haemoglobin involves a domain with an antiparallel eight-stranded β-barrel fold. J Bacteriol 189:254–264
    [Google Scholar]
  9. Dulley J. R., Grieve P. A. 1975; A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64:136–141
    [Google Scholar]
  10. Eichenbaum Z., Muller E., Morse S. A., Scott J. R. 1996; Acquisition of iron from host proteins by group A streptococcus. Infect Immun 64:5428–5429
    [Google Scholar]
  11. Fabriek B. O., Dijkstra C. D., van den Berg T. K. 2005; The macrophage scavenger receptor CD163. Immunobiology 210:153–160
    [Google Scholar]
  12. Fisher M., Huang Y.-S., Li X., McIver K. S., Toukoki C., Eichenbaum Z. 2008; Shr is a broad-spectrum surface receptor that contributes to adherence and virulence in group A streptococcus. Infect Immun 76:5006–5015
    [Google Scholar]
  13. Fitzgerald J. R., Loughman A., Keane F., Brennan M., Knobel M., Higgins J., Visai L., Speziale P., Cox D., Foster T. J. 2006; Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the Fc γRIIa receptor. Mol Microbiol 59:212–230
    [Google Scholar]
  14. Genco C. A., Dixon D. W. 2001; Emerging strategies in microbial haem capture. Mol Microbiol 39:1–11
    [Google Scholar]
  15. Grigg J. C., Vermeiren C. L., Heindrichs D. E., Murphy M. E. P. 2007a; Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 63:139–149
    [Google Scholar]
  16. Grigg J. C., Vermeiren C. L., Heindrichs D. E., Murphy M. E. P. 2007b; Heme coordination by Staphylococcus aureus IsdE. J Biol Chem 282:28815–28822
    [Google Scholar]
  17. Hanks T. S., Liu M., McClure M. J., Lei B. 2005; ABC transporter FtsABCD of Streptooccus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol 5:62
    [Google Scholar]
  18. Harrington D. J., Sutcliff I. C., Chanter N. 2002; The molecular basis of Streptococcus equi infection and disease. Microbes Infect 4:501–510
    [Google Scholar]
  19. Heather Z., Holden M. T., Steward K. F., Parkhill J., Song L., Challis G. L., Robsinson C., Davis-Poynter N., Waller A. S. 2008; A novel streptococcal conjugative element involved in iron acquisition. Mol Microbiol 70:1274–1292
    [Google Scholar]
  20. Holden M. T. G., Heather Z., Paillot R., Steward K. F., Webb K., Ainslie F., Jourdan T., Bason N. C., Holroyd N. E. other authors 2009; Genomic evidence for the evolution of Streptococcus equi: restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 5:e1000346
    [Google Scholar]
  21. Janulczyk R., Ricci S., Björck L. 2003; MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of Streptococcus pyogenes. Infect Immun 71:2656–2664
    [Google Scholar]
  22. Kelley L. A., Sternberg M. J. E. 2009; Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Lei B., Smoot L. M., Menning H. M., Voyich J. M., Kala S. V., Deleo F. R., Reid S. D., Musser J. M. 2002; Identification and characterization of a novel heme-associated cell surface protein made by Streptococcus pyogenes. Infect Immun 70:4494–4500
    [Google Scholar]
  25. Lei B., Liu M. L., Voyich J. M., Prater C. I., Kala S. V., DeLeo F. R., Musser J. M. 2003; Identification and characterization of HtsA, a second heme-binding protein made by Streptococcus pyogenes. Infect Immun 71:5962–5969
    [Google Scholar]
  26. Lindmark H., Nilsson M., Guss B. 2001; Comparison of the fibronectin-binding protein FNE from Streptococcus equi subspecies equi with FNZ from S. equi subspecies zooepidemicus reveals a major and conserved difference. Infect Immun 69:3159–3163
    [Google Scholar]
  27. Liu M., Lei B. 2005; Heme transfer from streptococcal cell surface protein Shp to HtsA of transporter HtsABC. Infect Immun 73:5086–5092
    [Google Scholar]
  28. Maguin E., Prévost H., Ehrlich S. D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935
    [Google Scholar]
  29. Maresso A. W., Schneewind O. 2006; Iron acquisition and transport in Staphylococcus aureus. Biometals 19:193–203
    [Google Scholar]
  30. Mazmanian S. K., Skaar E. P., Gaspar A. H., Humayun M., Gornicki P., Jelenska J., Joachmiak A., Missiakas D. M., Schneewind O. 2003; Passage of heme–iron across the envelope of Staphylococcus aureus. Science 299:906–909
    [Google Scholar]
  31. Meehan M., Nowlan P., Owen P. 1998; Affinity purification and characterization of a fibrinogen-binding protein complex which protects mice against lethal challenge with Streptococcus equi subsp. equi. Microbiology 144:993–1003
    [Google Scholar]
  32. Meehan M., Lynagh Y., Woods C., Owen P. 2001; The fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi additionally binds IgG and contributes to virulence in a mouse model. Microbiology 147:3311–3322
    [Google Scholar]
  33. Muryoi N., Tiedemann M. T., Pluym M., Cheung J., Heinrichs D. E., Stillman M. J. 2008; Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Stapylococcus aureus. J Biol Chem 283:28125–28136
    [Google Scholar]
  34. Nygaard T. K., Blouin G. C., Liu M., Fukumura M., Olson J. S., Fabian M., Dooley D. M., Lei B. 2006a; The mechanism of direct heme transfer from streptococcal cell surface protein Shp to HtsA of the HTsABC transporter. J Biol Chem 281:20761–20771
    [Google Scholar]
  35. Nygaard T. K., Liu M., McClure M. J., Lei B. 2006b; Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subsp. equi. BMC Microbiol 6:82
    [Google Scholar]
  36. Owen P. 1985; Crossed immunoelectrophoresis in the study of outer membrane antigens. In Enterobacterial Surface Antigens: Methods for Molecular Characterization pp 207–242 Edited by Korhonen T. K. K., Dawes E. A., Makela P. H. Amsterdam: Elsevier;
    [Google Scholar]
  37. Perez-Casal J., Caparon M. G., Scott J. R. 1991; Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173:2617–2624
    [Google Scholar]
  38. Pilpa R. M., Fadeev E. A., Villareal V. A., Wong M. L., Phillips M., Clubb R. T. 2006; Solution structure of the NEAT (NEAr Transporter) domain from IdH/HarA: the human haemoglobin receptor in Staphylococcus aureus. J Mol Biol 360:435–447
    [Google Scholar]
  39. Pilpa R. M., Robson S. A., Villareal V. A., Wong M. L., Phillips M., Clubb R. T. 2009; Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem 284:1166–1176
    [Google Scholar]
  40. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  41. Reniere M. L., Torres V. J., Skaar E. P. 2007; Intracellular metalloporphyrin metabolism in Staphylococcus aureus. Biometals 20:333–345
    [Google Scholar]
  42. Sharp K. H., Schneider S., Cockayne A., Paoli M. 2007; Crystal structure of the heme–IsdC complex, the central conduit of the Isd iron/heme uptake system in Staphylococcus aureus. J Biol Chem 282:10625–10631
    [Google Scholar]
  43. Skaar E. P., Humayun M., Bae T., DeBord K. L., Schneewind O. 2004; Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628
    [Google Scholar]
  44. Smith K. M. 1975 Porphyrins and Metalloporphyrins Amsterdam: Elsevier;
  45. Timoney J. F. 1993; Strangles. Vet Clin North Am Equine Pract 9:365–374
    [Google Scholar]
  46. Timoney J. F. 2004; The pathogenic equine streptococci. Vet Res 35:397–409
    [Google Scholar]
  47. Villareal V. A., Pilpa R. M., Robson S. A., Fadeev E. A., Clubb R. T. 2008; The IsdC protein from Staphylococcus aureus uses a flexible binding pocket to capture heme. J Biol Chem 283:31591–31600
    [Google Scholar]
  48. Wandersman C., Delepelaire P. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647
    [Google Scholar]
  49. Watanabe M., Tanaka Y., Suenaga A., Kuroda M., Yao M., Watanabe N., Arisaka F., Ohta T., Tanaka I., Tsumoto K. 2008; Structural basis for multimeric heme complexation through a specific protein–heme interaction; the case of the third neat domain of IsdH from Staphylococcus aureus. J Biol Chem 283:28649–28659
    [Google Scholar]
  50. Wilks A., Burkhard K. A. 2007; Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Nat Prod Rep 24:511–522
    [Google Scholar]
  51. Yeowell H. N., White J. R. 1982; Iron requirement in the bactericidal mechanism of streptonigrin. Antimicrob Agents Chemother 22:961–968
    [Google Scholar]
  52. Zhu H., Liu M., Lei B. 2008a; The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp. BMC Microbiol 8:15
    [Google Scholar]
  53. Zhu H., Xie G., Liu M., Olson J. S., Fabian M., Dooley D. M., Lei B. 2008b; Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus. J Biol Chem 283:18450–18460
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036087-0
Loading
/content/journal/micro/10.1099/mic.0.036087-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error