1887

Abstract

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain, HBC54, was isolated from periphyton during a bloom. Based on the results of the 16S rRNA gene sequence analysis, strain HBC54 was closely related to 4Y4 (98.36 %), DSM 12444 (98.08 %), c7 (97.94 %), c1 (97.65 %), DSM 12447 (97.58 %), TW-4 (97.58 %) and UCT-28 (97.37 %). The average nucleotide identity and digital DNA–DNA hybridization values between HBC54 and its related type stains were below 78.97 and 23.7 %, which are lower than the threshold values for species delineation. The major fatty acids (>10.0 %) were identified as C 2-OH, summed feature 3 (C 7 and/or C 6) and summed feature 8 (C 7 and/or C 6) and the respiratory quinone was ubiquinone Q-10. The main polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol and three unidentified phospholipids. The genomic DNA G+C content was 64.8 mol%. Strain HBC54 is considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is HBC54 (=KCTC 92033=LMG 32427).

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology (Award KGM5252322)
    • Principle Award Recipient: Chi-YongAhn
  • National Research Foundation (Award 2023R1A2C1003308)
    • Principle Award Recipient: Chi-YongAhn
  • Korea Environmental Industry and Technology Institute (Award 2022003050004)
    • Principle Award Recipient: Chi-YongAhn
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006042
2023-09-22
2024-04-28
Loading full text...

Full text loading...

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article] [PubMed]
    [Google Scholar]
  3. Chaudhary DK, Dahal RH, Kim D-U, Kim J. Novosphingobium olei sp. nov., with the ability to degrade diesel oil, isolated from oil-contaminated soil and proposal to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans. Int J Syst Evol Microbiol 2021; 71:004628 [View Article] [PubMed]
    [Google Scholar]
  4. Yoo Y, Kim D, Lee H, Khim JS, Kim B et al. Novosphingobium aureum sp. nov., a marine bacterium isolated from salt flat sediment. Int J Syst Evol Microbiol 2021; 71:004930 [View Article] [PubMed]
    [Google Scholar]
  5. Le VV, Ko S-R, Lee S-A, Jin L, Ahn C-Y et al. Novosphingobium aquimarinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2020; 70:5911–5917 [View Article] [PubMed]
    [Google Scholar]
  6. He X, Lu H, Hu W, Deng T, Gong X et al. Novosphingobium percolationis sp. nov. and Novosphingobium huizhouense sp. nov., isolated from landfill leachate of a domestic waste treatment plant. Int J Syst Evol Microbiol 2022; 72:005394 [View Article] [PubMed]
    [Google Scholar]
  7. Nguyen TM, Myung S-W, Jang H, Kim J. Description of Novosphingobium flavum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016; 66:3642–3650 [View Article] [PubMed]
    [Google Scholar]
  8. Lee J-C, Kim S-G, Whang K-S. Novosphingobium aquiterrae sp. nov., isolated from ground water. Int J Syst Evol Microbiol 2014; 64:3282–3287 [View Article] [PubMed]
    [Google Scholar]
  9. Liu ZP, Wang BJ, Liu YH, Liu SJ. Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 2005; 55:1229–1232 [View Article] [PubMed]
    [Google Scholar]
  10. Krishnan R, Menon RR, Busse H-J, Tanaka N et al. Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res Microbiol 2017; 168:113–121 [View Article] [PubMed]
    [Google Scholar]
  11. Matsuyama H, Kamesaki T, Sasaki R, Minami H, Yumoto I. Production of two types of exopolysaccharide by Novosphingobium rosa. J Biosci Bioeng 2003; 95:152–156 [View Article] [PubMed]
    [Google Scholar]
  12. Hu Y, Chen J, Fan H, Xie P, He J. A review of neurotoxicity of microcystins. Environ Sci Pollut Res Int 2016; 23:7211–7219 [View Article] [PubMed]
    [Google Scholar]
  13. Shi L, Du X, Liu H, Chen X, Ma Y et al. Update on the adverse effects of microcystins on the liver. Environ Res 2021; 195:110890 [View Article]
    [Google Scholar]
  14. Davis TW, Bullerjahn GS, Tuttle T, McKay RM, Watson SB. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie. Environ Sci Technol 2015; 49:7197–7207 [View Article] [PubMed]
    [Google Scholar]
  15. Wu Y, Xia L, Yu Z, Shabbir S, Kerr PG. In situ bioremediation of surface waters by periphytons. Bioresour Technol 2014; 151:367–372 [View Article] [PubMed]
    [Google Scholar]
  16. Wu Y, Liu J, Yang L, Chen H, Zhang S et al. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ Microbiol 2011; 13:604–615 [View Article] [PubMed]
    [Google Scholar]
  17. Le VV, Ko S-R, Kang M, Shin Y, Lim B et al. Periphyton reduces cyanobacterial blooms by promoting potentially cyanobactericidal bacteria. J Appl Phycol 2023; 35:1285–1299 [View Article]
    [Google Scholar]
  18. Cui Y, Jin L, Ko S-R, Chun S-J, Oh H-S et al. Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study. Sci Rep 2017; 7:7827 [View Article]
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  22. Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997; 53:240–255 [View Article] [PubMed]
    [Google Scholar]
  23. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  25. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [View Article] [PubMed]
    [Google Scholar]
  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  28. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 2023; 51:D678–D689 [View Article] [PubMed]
    [Google Scholar]
  31. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article]
    [Google Scholar]
  32. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  35. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  36. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  37. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-Mapper V2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Cell Biol 2021; 38:5825–5829
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  39. Junkins EN, McWhirter JB, McCall L-I, Stevenson BS. Environmental structure impacts microbial composition and secondary metabolism. ISME Commun 2022; 2:15 [View Article]
    [Google Scholar]
  40. Zeng Y-H, Cai Z-H, Cheng K-K, Zhou J. Naturally occurring lasso peptides as algicidal agents against Microcystis aeruginosa. J Clean Prod 2022; 381:135136 [View Article]
    [Google Scholar]
  41. Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 2012; 51:1124–1137 [View Article] [PubMed]
    [Google Scholar]
  42. Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S et al. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci U S A 2015; 112:857–862 [View Article] [PubMed]
    [Google Scholar]
  43. Shiner EK, Rumbaugh KP, Williams SC. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 2005; 29:935–947 [View Article] [PubMed]
    [Google Scholar]
  44. Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 2017; 8:828 [View Article] [PubMed]
    [Google Scholar]
  45. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108–160 [View Article]
    [Google Scholar]
  46. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  47. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  48. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  49. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [PubMed]
    [Google Scholar]
  50. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  51. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  52. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd. edn Washington, DC: American Society for Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  53. Kates M. Techniques of Lipidology Newport Somerville; 1972 pp 347–353
    [Google Scholar]
  54. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  55. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article] [PubMed]
    [Google Scholar]
  56. Liu Y, Pei T, Du J, Huang H, Deng M-R et al. Comparative genomic analysis of the genus Novosphingobium and the description of two novel species Novosphingobium aerophilum sp. nov. and Novosphingobium jiangmenense sp. nov. Syst Appl Microbiol 2021; 44:126202 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006042
Loading
/content/journal/ijsem/10.1099/ijsem.0.006042
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error