1887

Abstract

Three extremely halophilic archaeal strains (LT55, SQT-29-1 and WLHS5) were isolated from Gobi saline soil and a salt lake, China. These strains were most related to the genera and (92.6–95.1 % similarities), and showed low similarities with other genera within the family based on 16S rRNA genes. Phylogenomic analysis confirmed that the three strains formed a distinct clade separated from the related genera and , which indicated that they may represent a novel genus of the family . The average nucleotide identity (ANI), in silico DNA–DNA hybridization (DDH) and average amino acid identity (AAI) values among the three strains were no more than 87, 34 and 85 %, respectively, much lower than the threshold values for species demarcation. The major phospholipids of the three strains were phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylglycerol phosphate methyl ester (PGP-Me). The glycolipid profiles of the three strains were diverse; sulfated mannosyl glucosyl diether (S-DGD-1) and disulfated mannosyl glucosyl diether (S-DGD) were found in strains LT55 and WLHS5, while mannosyl glucosyl diether (DGD-1) and S-DGD-1 in strain SQT-29-1. The combination of phenotypic, chemotaxonomic, phylogenetic and genomic analyses suggested that strains WLHS5 (=CGMCC 1.13781 = JCM 33558), SQT-29-1 (=CGMCC 1.16065 = JCM 33554) and LT55 (=CGMCC 1.15188 = JCM 30838) represent three novel species of a new genus within the family , for which the names, gen. nov., sp. nov., sp. nov. and sp. nov., are proposed. Genome-based classification of genera and revealed that should be transferred to the genus as comb. nov. and as a heterotypic synonym of Liu . 2015.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32070003)
    • Principle Award Recipient: Heng-LinCui
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005598
2022-10-26
2024-04-27
Loading full text...

Full text loading...

References

  1. Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017; 163:623–645 [View Article]
    [Google Scholar]
  2. Cui H-L, Dyall-Smith ML. Cultivation of halophilic archaea (class halobacteria) from thalassohaline and athalassohaline environments. Mar Life Sci Technol 2021; 3:243–251 [View Article]
    [Google Scholar]
  3. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015; 65:1050–1069 [View Article]
    [Google Scholar]
  4. Gupta RS, Naushad S, Fabros R, Adeolu M. Erratum to: a phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie Van Leeuwenhoek 2016; 109:1521–1523 [View Article]
    [Google Scholar]
  5. Liu Q, Ren M, Zhang L-L. Natribaculum breve gen. nov., sp. nov. and Natribaculum longum sp. nov., halophilic archaea isolated from saline soil. Int J Syst Evol Microbiol 2015; 65:604–608 [View Article]
    [Google Scholar]
  6. Itoh T, Yamaguchi T, Zhou P, Takashina T. Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in inner mongolia, china. Extremophiles 2005; 9:111–116 [View Article]
    [Google Scholar]
  7. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009; 13:31–37 [View Article]
    [Google Scholar]
  8. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article]
    [Google Scholar]
  9. Tamura K, Stecher G, Peterson DS, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  13. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  14. Shi W, Sun Q, Fan G, Hideaki S, Moriya O et al. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 2021; 49:D694–D705 [View Article]
    [Google Scholar]
  15. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  17. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  18. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article]
    [Google Scholar]
  19. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  20. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  21. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–7 [View Article]
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  23. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article]
    [Google Scholar]
  24. DUSSAULT HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article]
    [Google Scholar]
  25. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  26. Cui HL, Gao X, Yang X, Xu XW. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010; 14:493–499 [View Article]
    [Google Scholar]
  27. Lobasso S, Pérez-Davó A, Vitale R, Sánchez MM, Corcelli A. Deciphering archaeal glycolipids of an extremely halophilic archaeon of the genus Halobellus by MALDI-TOF/MS. Chem Phys Lipids 2015; 186:1–8 [View Article]
    [Google Scholar]
  28. Wainø M, Tindall BJ, Ingvorsen K. Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 2000; 50 Pt 1:183–190 [View Article]
    [Google Scholar]
  29. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  30. Kajale S, Deshpande N, Lodha T, Shouche Y, Sharma A. Natronococcus pandeyae sp. nov., a novel haloarchaeon from Sambhar Salt Lake. Curr Microbiol 2022; 79:51 [View Article]
    [Google Scholar]
  31. Corral P, Corcelli A, Ventosa A. Halostagnicola bangensis sp. nov., an alkaliphilic haloarchaeon from a soda lake. Int J Syst Evol Microbiol 2015; 65:754–759 [View Article]
    [Google Scholar]
  32. Xue Q, Zuo Z, Zhou H, Zhou J, Zhang S et al. Salinadaptatus halalkaliphilus gen. nov., sp. nov., a haloalkaliphilic archaeon isolated from salt pond in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  35. de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of Haloarchaea: The Controversy of the Genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909 [View Article]
    [Google Scholar]
  36. Mehrshad M, Amoozegar MA, Makhdoumi A, Rasooli M, Asadi B et al. Halovarius luteus gen. nov., sp. nov., an extremely halophilic archaeon from a salt lake. Int J Syst Evol Microbiol 2015; 65:2420–2425 [View Article]
    [Google Scholar]
  37. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  38. Han J, Hou J, Liu H, Cai S, Feng B et al. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 2010; 76:7811–7819 [View Article]
    [Google Scholar]
  39. Serrano S, Mendo S, Caetano T. Haloarchaea have a high genomic diversity for the biosynthesis of carotenoids of biotechnological interest. Res Microbiol 2022; 173:103919 [View Article]
    [Google Scholar]
  40. Elling FJ, Becker KW, Könneke M, Schröder JM, Kellermann MY et al. Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environ Microbiol 2016; 18:692–707 [View Article]
    [Google Scholar]
  41. Bao C-X, Li S-Y, Xin Y-J, Hou J, Cui H-L. Natrinema halophilum sp. nov., Natrinema salinisoli sp. nov., Natrinema amylolyticum sp. nov. and Haloterrigena alkaliphila sp. nov., four extremely halophilic archaea isolated from salt mine, saline soil and salt lake. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005598
Loading
/content/journal/ijsem/10.1099/ijsem.0.005598
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error