1887

Abstract

Prophages have important roles in virulence, antibiotic resistance, and genome evolution in . Rapid growth in the number of sequenced genomes allows for an investigation of prophage sequences at an unprecedented scale. We developed a novel computational pipeline for phage discovery and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and PROKKA, genome annotation tools to detect and analyse prophage sequences in nearly 10 011 . genomes, discovering thousands of putative prophage sequences with genes encoding virulence factors and antibiotic resistance. To our knowledge, this is the first large-scale application of PhiSpy on a large-scale set of genomes (10 011 . ). Determining the presence of virulence and resistance encoding genes in prophage has implications for the potential transfer of these genes/functions to other bacteria via transduction and thus can provide insight into the evolution and spread of these genes/functions between bacterial strains. While the phage we have identified may be known, these phages were not necessarily known or characterized in and the clustering and comparison we did for phage based on their gene content is novel. Moreover, the reporting of these genes with the genomes is novel.

Funding
This study was supported by the:
  • National GEM Consortium
    • Principle Award Recipient: Tyromesteven Sweet Jr.
  • National Science Foundation (Award 1633722)
    • Principle Award Recipient: NotApplicable
  • National Science Foundation (Award ACI-1429783)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000424
2023-06-16
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/acmi/5/6/acmi000424.html?itemId=/content/journal/acmi/10.1099/acmi.0.000424&mimeType=html&fmt=ahah

References

  1. Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife 2015; 4:e08490 [View Article] [PubMed]
    [Google Scholar]
  2. Liu L. Fields virology, 6th edition. Clin Infect Dis 2014; 59:613 [View Article]
    [Google Scholar]
  3. Versoza CJ, Pfeifer SP. Computational prediction of bacteriophage host ranges. Microorganisms 2022; 10:149 [View Article] [PubMed]
    [Google Scholar]
  4. Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg Infect Dis 2007; 13:1840–1846 [View Article] [PubMed]
    [Google Scholar]
  5. Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 2005; 69:585–607 [View Article] [PubMed]
    [Google Scholar]
  6. Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 2014; 66:572–577 [View Article] [PubMed]
    [Google Scholar]
  7. Scharn CR, Tenover FC, Goering RV. Transduction of Staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob Agents Chemother 2013; 57:5233–5238 [View Article] [PubMed]
    [Google Scholar]
  8. Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K et al. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 2017; 7:1–11 [View Article]
    [Google Scholar]
  9. Ramisetty BCM, Sudhakari PA. Bacterial “Grounded” prophages: hotspots for genetic renovation and innovation. Front Genet 2019; 10:65 [View Article] [PubMed]
    [Google Scholar]
  10. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13:42–51 [View Article] [PubMed]
    [Google Scholar]
  11. Gandon S. Why be temperate: lessons from bacteriophage λ. Trends Microbiol 2016; 24:356–365 [View Article] [PubMed]
    [Google Scholar]
  12. Staphylococcus aureus (ID 154)—Genome—NCBI. n.d https://www.ncbi.nlm.nih.gov/genome/?term=Staphylococcus%20aureus[Organism]&cmd=DetailsSearch accessed 2 October 2020 [PubMed]
  13. Genome List—Genome—NCBI. n.d https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/ accessed 1 August 2021 [PubMed]
  14. Krassowski M, Das V, Sahu SK, Misra BB. State of the field in multi-omics research: from computational needs to data mining and sharing. Front Genet 2020; 11:610798 [View Article] [PubMed]
    [Google Scholar]
  15. Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies. Nucleic Acids Res 2012; 40:e126
    [Google Scholar]
  16. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  19. Zhang KY, Gao YZ, Du MZ, Liu S, Dong C et al. Vgas: a viral genome annotation system. Front Microbiol 2019; 10:184 [View Article] [PubMed]
    [Google Scholar]
  20. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  21. Guo FB, Ou HY, Zhang CT. ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes. Nucleic Acids Res 2003; 31:1780–1789 [View Article] [PubMed]
    [Google Scholar]
  22. Mahram A, Herbordt MC. NCBI BLASTP on high-performance reconfigurable computing systems. ACM Trans Reconfigurable Technol Syst 2015; 7:1–20 [View Article]
    [Google Scholar]
  23. Igraph – Network analysis software. n.d https://igraph.org/ accessed 7 June 2021
  24. Leydesdorff L. On the normalization and visualization of author co-citation data: Salton’s Cosineversus the Jaccard index. J Am Soc Inf Sci 2008; 59:77–85 [View Article]
    [Google Scholar]
  25. Bevelander KE, Smit CR, van Woudenberg TJ, Buijs L, Burk WJ et al. Youth’s social network structures and peer influences: study protocol MyMovez project - Phase I. BMC Public Health 2018; 18:504 [View Article] [PubMed]
    [Google Scholar]
  26. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021; 39:578–585 [View Article] [PubMed]
    [Google Scholar]
  27. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: High-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article] [PubMed]
    [Google Scholar]
  28. Prokaryotic Genome Annotation Guide. n.d https://igraph.org/ accessed 11 June 2021 [PubMed]
  29. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–6 [View Article] [PubMed]
    [Google Scholar]
  30. National Database of Antibiotic Resistant Organisms (NDARO)—Pathogen Detection—NCBI. n.d accessed 26 July 2021 [PubMed]
  31. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. In Edwards D. eds Plant Bioinformatics: Methods and Protocols Humana Press; 2007 pp 89–112 [View Article]
    [Google Scholar]
  32. Herron LL, Chakravarty R, Dwan C, Fitzgerald JR, Musser JM et al. Genome sequence survey identifies unique sequences and key virulence genes with unusual rates of amino acid substitution in bovine Staphylococcus aureus. Infect Immun 2002; 70:3978–3981 [View Article] [PubMed]
    [Google Scholar]
  33. Herron-Olson L, Fitzgerald JR, Musser JM, Kapur V. Molecular correlates of host specialization in Staphylococcus aureus. PLoS One 2007; 2:e1120 [View Article] [PubMed]
    [Google Scholar]
  34. Staphylococcus aureus (ID 400143)—BioProject—NCBI. n.d https://www.ncbi.nlm.nih.gov/bioproject/PRJNA400143/ accessed 20 June 2021 [PubMed]
  35. Manara S, Pasolli E, Dolce D, Ravenni N, Campana S et al. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a pediatric hospital. Genome Med 2018; 10:82 [View Article] [PubMed]
    [Google Scholar]
  36. Nübel U, Dordel J, Kurt K, Strommenger B, Westh H et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog 2010; 6:e1000855 [View Article] [PubMed]
    [Google Scholar]
  37. Cameron DR, Ward DV, Kostoulias X, Howden BP, Moellering RC et al. Serine/threonine phosphatase Stp1 contributes to reduced susceptibility to vancomycin and virulence in Staphylococcus aureus. J Infect Dis 2012; 205:1677–1687 [View Article]
    [Google Scholar]
  38. Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci 2004; 101:9786–9791 [View Article] [PubMed]
    [Google Scholar]
  39. Enterotoxin type A Staphylococcus aureus Antibody (F12). Novus Biologicals. n.d https://www.novusbio.com/products/enterotoxin-type-a-staphylococcus-aureus-antibody-f12_nb100-73021 accessed 19 July 2021
  40. Schuster CF, Bertram R. Toxin-antitoxin systems of Staphylococcus aureus. Toxins 2016; 8:140 [View Article] [PubMed]
    [Google Scholar]
  41. Fozo EM, Hemm MR, Storz G. Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 2008; 72:579–589 [View Article] [PubMed]
    [Google Scholar]
  42. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010; 8:317–327 [View Article] [PubMed]
    [Google Scholar]
  43. Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 2003; 301:1496–1499 [View Article] [PubMed]
    [Google Scholar]
  44. Ono HK, Nishizawa M, Yamamoto Y, Hu D-L, Nakane A et al. Submucosal mast cells in the gastrointestinal tract are a target of staphylococcal enterotoxin type A. FEMS Immunol Med Microbiol 2012; 64:392–402 [View Article]
    [Google Scholar]
  45. Staphylococcus aureus subspaureus. NCTC 8325 (ID 57795)—bioproject—NCBI. n.d https://www.ncbi.nlm.nih.gov/bioproject/57795 accessed 18 July 2021 [PubMed]
  46. Comprehensive Natural Products II | ScienceDirect. n.d https://www.sciencedirect.com/referencework/9780080453828/comprehensive-natural-products-ii accessed 20 July 2021
  47. Staphylococcus aureus subsp. Aureus CIG1612 (ID 60683)—BioProject—NCBI. n.d https://www.ncbi.nlm.nih.gov/bioproject/PRJNA60683 accessed 18 July 2021 [PubMed]
  48. Deghorain M, Van Melderen L. The Staphylococci phages family: an overview. Viruses 2012; 4:3316–3335 [View Article] [PubMed]
    [Google Scholar]
  49. Nepal R, Houtak G, Shaghayegh G, Bouras G, Shearwin K et al. Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps. Microb Genom 2021; 7:12 [View Article] [PubMed]
    [Google Scholar]
  50. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021; 9: [View Article]
    [Google Scholar]
  51. Guo J, Vik D, Adjie Pratama A, Roux S, Sullivan M. Viral sequence identification SOP with VirSorter2 v3; 2021 [View Article]
  52. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2016; 2:16185 [View Article] [PubMed]
    [Google Scholar]
  53. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–45 [View Article] [PubMed]
    [Google Scholar]
  54. Bateman A, Coin L, Durbin R, Finn RD, Hollich V et al. The Pfam protein families database. Nucleic Acids Res 2004; 32:D138–41 [View Article] [PubMed]
    [Google Scholar]
  55. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res 2003; 31:371–373 [View Article] [PubMed]
    [Google Scholar]
  56. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000; 28:45–48 [View Article]
    [Google Scholar]
  57. Martin R, Hackl T, Hattab G, Fischer MG, Heider D et al. MOSGA: modular open-source genome annotator. Bioinformatics 2021; 36:5514–5515 [View Article]
    [Google Scholar]
  58. Martin R, Dreßler H, Hattab G, Hackl T, Fischer MG et al. MOSGA 2: comparative genomics and validation tools. Comput Struct Biotechnol J 2021; 19:5504–5509 [View Article] [PubMed]
    [Google Scholar]
  59. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  60. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  61. Shapiro JW, Putonti C. Gene co-occurrence networks reflect bacteriophage ecology and evolution. mBio 2018; 9:e01870-17 [View Article] [PubMed]
    [Google Scholar]
  62. Benson D, Lipman DJ, Ostell J. GenBank. Nucleic Acids Res 1993; 21:2963–2965 [View Article] [PubMed]
    [Google Scholar]
  63. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019; 47:D666–D677 [View Article]
    [Google Scholar]
  64. Mashima J, Kodama Y, Fujisawa T, Katayama T, Okuda Y et al. DNA data bank of Japan. Nucleic Acids Res 2017; 45:D25–D31 [View Article] [PubMed]
    [Google Scholar]
  65. Stano M, Beke G, Klucar L. viruSITE-integrated database for viral genomics. Database 2016; 2016:baw162 [View Article] [PubMed]
    [Google Scholar]
  66. Cook R, Brown N, Redgwell T, Rihtman B, Barnes M et al. INfrastructure for a PHAge REference database:identification of large-scale biases in the current collection of cultured phage genomes. PHAGE 2021; 2:214–223 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000424
Loading
/content/journal/acmi/10.1099/acmi.0.000424
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error