1887

Abstract

A transcriptional regulator gene, designated , was found downstream of the biodegradative arginine decarboxylase () gene (previously known as ) of . The arginine decarboxylase system is maximally induced under conditions of acidic pH, anaerobiosis and rich medium, and AdiY was found to increase the expression of . The DNA sequence of encodes a protein of 253 amino acids. Primer extension analysis defined the promoter. The amino acid sequence of AdiY showed homology to the XyIS/AraC family of transcriptional regulators, which includes EnvY and AppY. Studies suggested that sequences required for acid induction were also necessary to observe the stimulation by AdiY. An examination of the substitution of AdiY, AppY and EnvY showed that these three proteins can, to some extent, stimulate the other systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1311
1996-05-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1311.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1311&mimeType=html&fmt=ahah

References

  1. Atlung T., Brondsted L. Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase. J Bacterial 1994; 176:5414–5422
    [Google Scholar]
  2. Atlung T., Nielsen A., Hansen F.G. Isolation, characterization, and nucleotide sequence of appY, a regulatory gene for growth-phase-dependent gene expression in Escherichia coli. J Bacterial 1989; 171:1683–1691
    [Google Scholar]
  3. Auger E.A., Redding K.E., Plumb T., Childs L.C., Meng S.-Y., Bennett G.N. Construction of lac fusions to the inducible arginine- and lysine decarboxylase genes of Escherichia coli K12. Mol Microbiol 1989; 3:609–620
    [Google Scholar]
  4. Blethen S.L., Boeker E.A., Snell E.E. Arginine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. J Biol Chem 1968; 243:1671–1677
    [Google Scholar]
  5. Caron J., Coffield L.M., Scott J.R. A plasmid -encoded regulatory gene, ms, required for expression of the CS1 and CS2 adhesins of enterotoxigenic Escherichia coli. Proc Natl Acad Sci USA 1989; 86:963–967
    [Google Scholar]
  6. Casadaban M.J., Cohen S.N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 1979; 76:4530–4533
    [Google Scholar]
  7. Claros M.G., von Heijne D. TopPredll: an improved software for membrane protein structure predictions. Comput Appl Biosci 1994; 10:685–686
    [Google Scholar]
  8. Dente L., Cesareni G., Cortese R. pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 1983; 11:1645–1655
    [Google Scholar]
  9. D'Orazio S.E.F., Collins C.M. The plasmid-encoded urease gene cluster of the family Enterobacteriaceae is positively regulated by UreR, a member of the AraC family of transcriptional activators. J Bacteriol 1993; 175:3459–3467
    [Google Scholar]
  10. Dorman C.J. The VirF protein from Shigella flexneri is a member of the AraC transcription factor superfamily and is highly homologous to Rns, a positive regulator of virulence genes in enterotoxigenic Escherichia coli. Mol Microbiol 1992; 6:1575–1
    [Google Scholar]
  11. Enea V., Zinder N.D. Interference resistant mutants of phage fl. V'irology 1982; 122:222–226
    [Google Scholar]
  12. Fitzgerald D.J., Dryden G.L., Bronson E.C., Williams J.S., Anderson J.N. Conserved patterns of bending in satellite and nucleosome positioning DNA. J Biol Chem 1994; 269:21303–21314
    [Google Scholar]
  13. Flamm E.L., Weisberg R.A. Primary structure of the hip gene of Escherichia coli and of its product, the beta subunit of integration host factor. J Mol Biol 1985; 183:117–128
    [Google Scholar]
  14. Friedman D. Integration host factor: a protein for all reasons. Cell 1988; 55:545–554
    [Google Scholar]
  15. Gale E.F. The production of amines by bacteria. 1. The decarboxylation of amino acids by a strain of Bacterium coli. Biochem 1940; J34:392–413
    [Google Scholar]
  16. Gale E.F. The bacterial amino acid decarboxylases. Adv Envy mol 1946; 6:1–32
    [Google Scholar]
  17. Gallegos M.-T., Michin C., Ramos J.L. The XylS/AraC family of regulators. Nucleic Acids Ret 1993; 21:807–810
    [Google Scholar]
  18. Gilman M. Preparation of bacterial RNA. In Current Protocols in Molecular Biology 1987 Edited by Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. New York: John Wiley; 1 pp 442–444
    [Google Scholar]
  19. Goodrich J.A., Schwartz M.L., McClure W.R. Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res 1990; 18:4993–5000
    [Google Scholar]
  20. Heery D.M., Gannon F., Powell R. A simple method for subcloning DNA fragments from gel slices. Trends Genet 1990; 6:173
    [Google Scholar]
  21. Von Heijne G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the transmembrane topology. EMBO J 1986; 5:3021–3027
    [Google Scholar]
  22. Jordi B.J.A.M., Dag berg B., De Haan L.A.M., Hamers A.M., Van Der Zeijst B.A.M., Gaastra W., Uhlin B.E. The positive regulator CfaD overcomes the repression mediated by histone-like protein H-NS (HI) in the CFA/I fimbrial operon of Escherichia coli. EMBO J 1992; 11:2627–2632
    [Google Scholar]
  23. Kashiwagi K., Suzuki T., Suzuki F., Furuchi T., Kobayashi H., Igarashi K. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 1991; 266:20922–20927
    [Google Scholar]
  24. Kingston R.E. Primer extension. In Current Protocols in Molecular Biology 1987 Edited by Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. New York: John Wiley; pp 481–483
    [Google Scholar]
  25. Klaasen P., De Graff F.K. Characterization of FapR, a positive regulator of expression of the 987P operon in enterotoxigenic Escherichia coli. Mol Microbiol 1990; 4:1779–1783
    [Google Scholar]
  26. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157:105–132
    [Google Scholar]
  27. Lin J., Lee I.S., Frey J., Slonczewski J.L., Foster J.W. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 1995; 177:4097–4104
    [Google Scholar]
  28. De Lorenzo V., Herrero M., Neilands J.B. pCON4 and pCON5: improved plasmid vectors to study bacterial promoters. FEMS Microbiol Eett 1988; 50:17–23
    [Google Scholar]
  29. Lundrigan M.D., Earhart C.F. Gene envY of Escherichia coli K-12 affects thermoregulation of major porin expression. J Bacteriol 1984; 157:262–268
    [Google Scholar]
  30. Lundrigan M.D., Friedrich M.J., Kadner R.J. Nucleotide sequence of the Escherichia coli porin thermoregulatory gene envY. Nucleic Acids Res 1989; 17:800
    [Google Scholar]
  31. Meng S.-Y., Bennett G.N. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 1992a; 174:2659–2669
    [Google Scholar]
  32. Meng S.-Y., Bennett G.N. Regulation of the Escherichia coli cad operon: location of a site required for acid induction. J Bacteriol 1992b; 174:2670–2678
    [Google Scholar]
  33. Menon K.P., Lee N.L. Activation of ara operons by a truncated AraC protein does not require inducer. Proc Natl Acad Sei USA 1990; 87:3708–3712
    [Google Scholar]
  34. Miller J.H. Experiments in Molecular Genetics 1972 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Nagasawa S., Ishige K., Mizuno T. Novel members of the two-component signal transduction genes in Escherichia coli. J Biochem 1993; 114:350–357
    [Google Scholar]
  36. Nakata N., Tobe T., Fukuda I., Suzaki T., Komatsu K., Yoshikawa M., Sasakawa C. The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol Microbiol 1993; 9:459–468
    [Google Scholar]
  37. Nataro J.P., Yikang D., Yingkang D., Walker K. AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J Bacteriol 1994; 176:4691–4699
    [Google Scholar]
  38. Neely M.N., Dell C.L., Olson E.R. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Bacteriol 1994; 176:3278–3285
    [Google Scholar]
  39. Nilsson B., Uhlen M., Josephson S., Gatenbeck S., Philipson L. An improved positive selection plasmid vector constructed by oligonucleotide mutagenesis. Nucleic Acids Res 1983; 22:8019–8030
    [Google Scholar]
  40. Ramos J.L., Rojo F., Zhou L., Timmis K.N. A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Res 1990; 18:2149–2152
    [Google Scholar]
  41. Rescei P.A., Snell E.E. Histidine decarboxylaseless mutants of Eactobacillus 30a: isolation and growth properties. J Bacteriol 1972; 112:624–626
    [Google Scholar]
  42. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning, a Laboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Savelkoul P.H., Willshaw G.A., McConnell M.M., Smith H.R., Hamers A.M., Van Der Zeijst B.A., Gaastra W. Expression of CFA/I fimbriae is positively regulated. Microb Pathog 1990; 8:91–99
    [Google Scholar]
  44. Shi X., Bennett G.N. Plasmids bearing hfq and the hns-like gene stpA complement hns mutants in modulating arginine decarboxylase gene expression in Escherichia coli. J Bacteriol 1994a; 176:6769–6775
    [Google Scholar]
  45. Shi X., Bennett G.N. Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol 1994b; 176:7017–7023
    [Google Scholar]
  46. Shi X., Waasdorp B.C., Bennett G.N. Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli. J Bacteriol 1993; 175:1182–1186
    [Google Scholar]
  47. Stirn K.P., Bennett G.N. Nucleotide sequence of the adi gene, which encodes the biodegradative acid-induced arginine decarboxylase of Escherichia coli. J Bacteriol 1993; 175:1221–1234
    [Google Scholar]
  48. Stirn K.P., Rives M., Waasdorp B., Bennett G.N. Investigation of the role of integration host factor (IHF) in the regulation of the biodegradative arginine and lysine decarboxylases of Escherichia coli. In Abstracts, 93rd General Meeting of the American Society for Microbiology 1993 Altanta GA 218
    [Google Scholar]
  49. Sutcliffe J.G. pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotides long. Nucleic Acids Res 1978; 5:2721–2728
    [Google Scholar]
  50. Tobe T., Yoshikawa M., Mizuno T., Sasakawa C. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by VirF and repression by H-NS. J Bacteriol 1993; 175:6142–6149
    [Google Scholar]
  51. Tobe T., Yoshikawa M., Sasakawa C. Thermoregulation of virB transcription in Shigella flexneri by sensing of changes in local DNA superhelicity. J Bacteriol 1995; 111:1094–1097
    [Google Scholar]
  52. Watson N., Dunyak D.S., Rosey E.L., Slonczewski J.L., Olson E.R. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 1992; 174:530–540
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1311
Loading
/content/journal/micro/10.1099/13500872-142-5-1311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error