Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:18:24.631Z Has data issue: false hasContentIssue false

Adaptation of energy metabolism to undernutrition in ewes. Contribution of portal-drained viscera, liver and hindquarters

Published online by Cambridge University Press:  09 March 2007

Isabelle Ortigues
Affiliation:
Laboratoire Croissance et Métabolismes des Herbivores, INRA, Theix, 63122 Saint Genés Champanelle, France
D. Durand
Affiliation:
Laboratoire Croissance et Métabolismes des Herbivores, INRA, Theix, 63122 Saint Genés Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Adaptation of energy metabolism to undernutrition and to the duration of undernutrition was studied in adult, non-pregnant, non-lactating ewes at the whole-animal, portal-drained viscera, liver and hindquarters levels. Arterio-venous and indirect calorimetry techniques were used. Animals were successively fed at 1 times (3 weeks) and at 0.5 times (7 weeks) their metabolizable energy requirements for maintenance (MEm). Portal, hepatic and hindquarters blood flows in quietly standing ewes decreased by 22, 19 and 11% respectively within the first week of undernutrition and remained at that level thereafter. Standardizing hindquarters blood flow to that in a given posture (quietly standing) reduced blood flow by 9.8%. In the portal-drained viscera and liver, O2 extraction rates decreased, leading to 34 and 38% drops in O2 consumption with underfeeding respectively. In the hindquarters, O2 extraction rate increased, partly counterbalancing the drop in blood flow. Thus O2 consumption of hindquarters tended to decrease but the effect was not significant. All changes appeared to be completed from day 5 of underfeeding. Consequently, the portal-drained viscera, liver and carcass were responsible for 39, 32 and 5% respectively of the drop in whole-animal O2 consumption with underfeeding. At the end of the 0.5 X MEm period, in vivo metabolic rates averaged 1.65, 4.89 and 0.38 mmol O2 consumed/d per g fresh weight of adipose-tissue-free portal-drained viscera, liver and boneless hindquarters respectively. Undernutrition imposed a much greater nutritional challenge to splanchnic tissues than to hindquarters. The former reduced theirenergy expnditure whereas hindquarters metabolism adapted by counteracting the slight drop in nutrient supply.

Type
Adaptation to undernutrition in ewes
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Baldwin, R. L., Smith, N. E., Taylor, J. & Sharp, M. (1980). Manipulating metabolic parameters to improve growth rate and milk secretion. Journal of Animal Science 51, 14161428.CrossRefGoogle ScholarPubMed
Baracos, V. E., Brun-Bellut, J. & Marie, M. (1991). Tissue protein synthesis in lactating and dry goats. British Journal of Nutrition 66, 451465.CrossRefGoogle ScholarPubMed
Bell, A. W. & Thompson, G. E. (1979). Free fatty acid oxidation in bovine muscle in vivo: effects of cold exposure and feeding. American Journal of Physiology 237, E309E315.Google ScholarPubMed
Bergman, E. N. & Wolff, J. E. (1971). Metabolism of volatile fatty acids by liver and portal-drained viscera in sheep. American Journal of Physiology 221, 586592.CrossRefGoogle ScholarPubMed
Bird, A. R., Chandler, K. D. & Bell, A. W. (1981). Effects of exercise and plane of nutrition on nutrient utilization by the bind limb of the sheep. Australian Journal of Biological Science 34, 541550.CrossRefGoogle Scholar
Blaxter, K. L. & Graham, N. McC. (1955). Plane of nutrition and starch equivalents. Journal of Agricultural Science, Cambridge 46, 292306.CrossRefGoogle Scholar
Burrin, D. G., Ferrell, C. L., Britton, R. A. & Bauer, M. (1990). Level of nutrition and visceral organ size and metabolic activity in sheep. British Journal of Nutrition 64, 439448.CrossRefGoogle ScholarPubMed
Burrin, D. G., Ferrell, C. L., Eisemann, J. H., Britton, R. A. & Nienaber, J. A. (1989). Effect of level of nutrition on splanchnic blood flow and oxygen consumption in sheep. British Journal of Nutrition 62, 2334.CrossRefGoogle ScholarPubMed
Clapperton, J. L. & Blaxter, K. L. (1965). Absence of long-term adaptation in the energy metabolism of sheep on constant-feed. Proceedings of the Nutrition Society 24, 3334.Google Scholar
Early, R. J., Thompson, J. R., Christopherson, R. J. & Sedgwick, G. W. (1987). Blood branched-chain amino and alpha-keto acid concentrations and net exchange across the portal-drained viscera and hindlimb of fed and fasted ruminants. Canadian Journal of Animal Science 67, 10111020.CrossRefGoogle Scholar
Eisemann, J. H. & Nienaber, J. A. (1990). Tissue and whole-body oxygen uptake in fed and fasted steers. British Journal of Nutrition 64, 399411.CrossRefGoogle ScholarPubMed
Granger, D. N., Richardson, P. D. I., Kvietys, P. R. & Mortillaro, N. A. (1980). Intestinal blood flow. Castroenterology 78, 837863.CrossRefGoogle ScholarPubMed
Greenway, C. V. (1983). Role of splanchnic venous system in overall cardiovascular homeostasis. Federation Proceedings 42, 16781684.Google ScholarPubMed
Gregory, N. G. & Christopherson, R. J. (1986). Effect of fasting on capillary blood flow in sheep. Research in Veterinary Science 40, 357360.CrossRefGoogle ScholarPubMed
Gross, K. L., Harmon, D. L. & Avery, T. B. (1990). Portal-drained visceral flux of nutrients in lamb fed alfalfa or maintained by total intragastric infusion. Journal of Animal Science 68, 214221.CrossRefGoogle ScholarPubMed
Harris, P. M., Garlick, P. J. & Lobley, G. E. (1989). Interactions between energy and protein metabolism in the whole body and hindlimb of sheep in response to intake. In Energy Metabolism of Farm Animals, pp. 167170 [Honing van der, Y., Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Harris, P. M., Skene, P. A., Buchan, V., Milne, E., Calder, A. G., Anderson, S. E., Connell, A. & Lobley, G. E. (1992). Effect of food intake on hind-limb and whole-body protein metabolism in young growing sheep: chronic studies based on arterio-venous techniques. British Journal of Nutrition 68, 389407.CrossRefGoogle ScholarPubMed
Heitmann, R. N., Sensenig, S. C, Reynolds, C. K., Fernandez, J. M. & Dawes, D. J. (1986). Changes in energy metabolite and regulatory hormone concentrations and net fluxes across splanchnic and peripheral tissues in fed and progressively fasted ewes. Journal of Nutrition 116, 25162524.CrossRefGoogle ScholarPubMed
Henriksson, J. (1992). Energy metabolism in muscle: its possible role in the adaptation to energy deficiency. In Energy Metabolism: Tissue Determinants and Cellular Corollaries, pp. 345365 [Kinney, J. M., Tucker, H. N., editors]. New York: Raven Press.Google Scholar
Homer, J. H. (1989). Introduction to Experimental Design in Psychology. New York: Harper & Row.Google Scholar
Huntington, G. B. (1982). Portal blood flow and net absorption of ammonia-nitrogen, urea-nitrogen, and glucose in nonlactating Holstein cows. Journal of Dairy Science 65, 11551162.CrossRefGoogle ScholarPubMed
Huntington, G. B. (1990). Energy metabolism in the digestive tract and liver of cattle: influence of physiological state and nutrition. Reproduction Nutrition Development 30, 3547.CrossRefGoogle ScholarPubMed
Huntington, G. B., Eisemann, J. H. & Whitt, J. M. (1990). Portal blood flow in beef steers: comparison of techniques and relation to hepatic blood flow, cardiac output and oxygen uptake. Journal of Animal Science 68, 16661673.CrossRefGoogle ScholarPubMed
Huntington, G. B. & McBride, B. W. (1988). Ruminant splanchnic tissues: energy costs of absorption and metabolism. In Biomechanisms Regulating Growth and Development, pp. 313327 [Steffens, G. L., and Rumsey, T. S., editors]. Boston: Kluver Academic Publishers.CrossRefGoogle Scholar
Huntington, G. B., Varga, G. A., Glenn, B. P. & Waldo, D. R. (1988). Net absorption and oxygen consumption by Holstein steers fed alfalfa or orchardgrass silage at two equalized intakes. Journal of Animal Science 66, 12921302.CrossRefGoogle ScholarPubMed
Institut National de, la Recherche Agronomique (1978). Alimentation des Ruminants. Versailles: INRA Publications. Isserty, A. & Ortigues, I. (1994). Méthodes d'exploitation de données concernant les débits sanguins mesurés au niveau des viscères et du train-arrière chez la brebis (Methods of analysis of splanchnic and aortic blood flow data obtained in ewes). Reproduction Nutrition Development 34, 399413.Google Scholar
Jarrett, I. G., Filsell, O. H. & Ballard, F. J. (1976). Utilization of oxidizable substrates by the sheep hind limb: effects of starvation and exercise. Metabolism 25, 523531.CrossRefGoogle ScholarPubMed
Katz, M. L. & Bergman, E. N. (1969). Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. American Journal of Physiology 216, 946952.CrossRefGoogle ScholarPubMed
Koch, L. G., Strick, D. M., Britton, S. L. & Metting, P. J. (1991). Reflex versus autoregulatory control of hindlimb blood flow during treadmill exercise in dogs. American Journal of Physiology 260, H436H444.Google ScholarPubMed
Lanciault, G. & Jacobson, E. D. (1976). The gastrointestinal circulation. Gastroenterology 71, 851873.CrossRefGoogle ScholarPubMed
Lindsay, D. B. (1993). Metabolism of the portal drained viscera. In Quantitative Aspects of Ruminant Digestion and Metabolism, pp. 267289 [Forbes, J. M., France, J., editors]. Wallingford: CAB International.Google Scholar
Lobley, G. E. (1990). Energy metabolism reactions in ruminant muscle: responses to age, nutrition and hormonal status. Reproduction Nutrition Development 30, 1334.CrossRefGoogle ScholarPubMed
Lobley, G. E. (1993). Species comparisons of tissue protein metabolism: effects of age and hormonal action. Journal of Nutrition 123, 337 343.Google Scholar
Lobley, G. E., Connell, A., Milne, E., Newman, A. M. & Ewing, T. A. (1994). Protein synthesis in splanchnic tissues of sheep offered two levels of intake. British Journal of Nutrition 71, 313.CrossRefGoogle ScholarPubMed
Lobley, G., Harris, P. M., Skene, P. A., Brown, D., Milne, E., Calder, A. G., Anderson, S. E., Garlick, P. J., Nevison, I. & Connell, A. (1992). Responses in tissue protein synthesis to sub-and supra-maintenance intake in young growing sheep: comparison of large-dose and continuous-infusion techniques. British Journal of Nutrition 68, 373388.CrossRefGoogle ScholarPubMed
Lomax, M. A. & Baird, G. D. (1983). Blood flow and nutrient exchange across the liver and gut of the dairy cow. Effects of lactation and fasting. British Journal of Nutrition 49, 481496.CrossRefGoogle ScholarPubMed
McLean, J. A. (1986). The significance of carbon dioxide and methane measurements in the estimation of heat production in cattle. British Journal of Nutrition 55, 631633.CrossRefGoogle ScholarPubMed
Oddy, V. H., Gooden, J. M. & Annison, E. F. (1984). Partitioning of nutrients in Merino ewes. I. Contribution of skeletal muscle, the pregnant uterus and the lactating mammary gland to total energy expenditure. Australian Journal of Biological Science 37, 375388.CrossRefGoogle Scholar
Ortigues, I. (1991). Adaptation du métabolisme énergétique des ruminants à la sous-alimentation. Quantification au niveau de l'animal entier et de tissus corporels (Adaptation of energy metabolism to undernutrition in ruminants. Quantification in the whole animal and in individual body tissues.) Reproduction Nutrition Development 31, 593616.CrossRefGoogle Scholar
Ortigues, I., Durand, D. & Lefaivre, J. (1994). Use of para amino hippuric acid to measure blood flows through portal drained viscera, liver and hindquarters in sheep. Journal of Agricultural Science, Cambridge 122, 299308.CrossRefGoogle Scholar
Pethick, D. W., Harman, N. & Chong, J. K. (1987). Non-esterified long-chain fatty acid metabolism in fed sheep at rest and during exercise. Australian Journal of Biological Science 40, 221234.CrossRefGoogle ScholarPubMed
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1981). Acetate supply and utilization by the tissues of sheep in vivo. British Journal of Nutrition 46, 97110.CrossRefGoogle ScholarPubMed
Pethick, D. W. & Vernau, B. (1984). The effect of acetate on the utilization of glucose by skeletal muscle on the sheep hindlimb. Canadian Journal of Animal Science 64, Suppl. 1, 291292.CrossRefGoogle Scholar
Reynolds, C. K., Lapierre, H., Tyrrell, H. F., Elsasser, T. H., Staples, R. C, Gaudreau, P. & Brazeau, P. (1992). Effects of growth hormone-releasing factor and feed intake on energy metabolism in growing beef steers: net nutrient metabolism by portal-drained viscera and liver. Journal of Animal Science 70, 752763.CrossRefGoogle ScholarPubMed
Reynolds, C. K., Tyrrell, H. F. & Reynolds, P. J. (1991). Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: whole body energy and nitrogen balance and visceral heat production. Journal of Nutrition 121, 9941003.CrossRefGoogle ScholarPubMed
Richmond, C. E., Lunt, D. K., Greene, L. W. & Byers, F. M. (1988). Effects of dietary restriction and subsequent re-alimentation on liver mass in growing/finishing beef steers. Nutrition Reports International 38, 501507.Google Scholar
Rompala, R. E. & Hoagland, T. A. (1987). Effect of level of alimentation on visceral organ mass and the morphology and Na+, K+ adenosinetriphosphatase activity of intestinal mucosa in lambs. Journal of Animal Science 65, 10581063.CrossRefGoogle Scholar
Schultz, E., Oslage, H. J. & Daenicke, R. (1974). Untersuchung über die Zuzammensetzung der Korpersubstanz sowie den Stoff- und Energieansatz bei Wachsenden Mastbullen (Research work on body composition, and energy and nitrogen utilization in bulls). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittlekunde Suppl. 4, 170.Google Scholar
Sellers, A. F. (1965). Blood flow in the rumen vessels. In Physiology of Digestion in the Ruminant, pp. 171184 [Dougherty, R. W., editor]. Washington: Butterworths.Google Scholar
Shetty, P. S. (1990). Physiological mechanisms in the adaptive response of metabolic rates to energy restriction. Nutrition Research Reviews 3, 4974.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems (1987). SAS/STAT Guide for Personal Computers. Cary, NC: SAS Inst. Inc.Google Scholar
Symonds, M. E. & Lomax, M. A. (1990). Effect of chronic cold exposure and underfeeding on hind-limb tissue metabolism in pregnant sheep. Journal of Agricultural Science, Cambridge 115, 421428.CrossRefGoogle Scholar
Teleni, E., Annison, E. F. & Lindsay, D. B. (1986). Metabolism of valine and the exchange of amino acids across the hind-limb muscles of fed and starved sheep. Australian Journal of Biological Science 39, 379393.CrossRefGoogle ScholarPubMed
Tucker, V. A. (1967). Method for oxygen content and dissociation curves on microliter blood samples. Journal of Applied Physiology 23, 410414.CrossRefGoogle ScholarPubMed
Underwood, E. J. (1981). The Mineral Nutrition of Livestock. Slough: Commonwealth Agricultural Bureaux..Google Scholar
Vermorel, M., Bouvier, J.-C, Bonnet, Y. & Fauconneau, G. (1973). Construction et fonctionnement de 2 chambres respiratoires du type “circuit-ouvert” pour jeunes bovins (Construction and operation of two “open-circuit” respiration chambers for young cattle). Annales de Biologie Animate, Biochimie et Biophysique 13, 659681.CrossRefGoogle Scholar
Wainman, F. W., Blaxter, K. L. & Smith, J. S. (1972). The utilization of the energy of artificially dried grass prepared in different ways. Journal of Agricultural Science, Cambridge 78, 441447.CrossRefGoogle Scholar
Warner, A. C. I. (1981). Rate of passage of digesta through the gut of mammals and birds. Nutrition Abstracts and Reviews Series B 51, 789820.Google Scholar
Weekes, T. E. C. & Webster, A. J. F. (1975). Metabolism of propionate in the tissues of the sheep gut. British Journal of Nutrition 33, 425438.CrossRefGoogle Scholar
Young, B. A. (1966). Energy expenditure and respiratory activity of sheep during feeding. Australian Journal of Agricultural Research 17, 355362.CrossRefGoogle Scholar