Synthesis 2012; 44(11): 1672-1678
DOI: 10.1055/s-0031-1290948
paper
© Georg Thieme Verlag Stuttgart · New York

Unique Salt Effect on Highly Selective Synthesis of Acid-Labile Terpene and Styrene Oxides with a Tungsten/H2O2 Catalytic System under Acidic Aqueous Conditions

Houjin Hachiya
a   National Institute of Advanced Industrial Science and Technology (AIST), Central 5 Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan, Fax: +81(29)8614670   Email: y-kon@aist.go.jp
,
Yoshihiro Kon*
a   National Institute of Advanced Industrial Science and Technology (AIST), Central 5 Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan, Fax: +81(29)8614670   Email: y-kon@aist.go.jp
,
Yutaka Ono
a   National Institute of Advanced Industrial Science and Technology (AIST), Central 5 Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan, Fax: +81(29)8614670   Email: y-kon@aist.go.jp
,
Kiyoshi Takumi
b   Arakawa Chemical Industries, Ltd., 5, Okubo, Tsukuba, Ibaraki, 300-2611, Japan
,
Naoki Sasagawa
b   Arakawa Chemical Industries, Ltd., 5, Okubo, Tsukuba, Ibaraki, 300-2611, Japan
,
Yoichiro Ezaki
b   Arakawa Chemical Industries, Ltd., 5, Okubo, Tsukuba, Ibaraki, 300-2611, Japan
,
Kazuhiko Sato*
a   National Institute of Advanced Industrial Science and Technology (AIST), Central 5 Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan, Fax: +81(29)8614670   Email: y-kon@aist.go.jp
› Author Affiliations
Further Information

Publication History

Received: 13 February 2012

Accepted after revision: 14 March 2012

Publication Date:
26 April 2012 (online)


Abstract

Acid-labile epoxides such as terpene and styrene oxides are effectively synthesized in high yields with good selectivities using tungsten-catalyzed hydrogen peroxide epoxidation in the presence of Na2SO4. The salt effect is thought to originate with the addition of a saturated amount of Na2SO4 to aqueous H2O2; this addition strongly inhibited the undesired hydrolysis of the acid-labile epoxy products, despite the biphasic conditions of substrate as oil phase and H2O2 as acidic aqueous phase.

 
  • References

    • 1a Ullmann’s Encyclopedia of Industrial Chemistry . Vol. A9, 5th ed. Gerhartz W, Yamamoto YS, Kaudy L, Rounsaville JF, Schulz G. Wiley-VCH; Weinheim: 1987: 531
    • 1b Kirk-Othmer Encyclopedia of Chemical Technology . Vol. 9, 4th ed. Kroschwitz JI, Howe-Grant M. Wiley; New York: 1994: 377
    • 1c Kirk-Othmer Encyclopedia of Chemical Technology . Vol. 9, 4th ed. Kroschwitz JI, Howe-Grant M. Wiley; New York: 1994: 730
  • 2 Larock RC In Comprehensive Organic Transformations . 2nd ed. Wiley; New York: 1999: 915
    • 3a Strukul G. Catalytic Oxidations with Hydrogen Peroxide as Oxidant . Kluwer Academic Publishers; Netherlands: 1992
    • 3b Jones CW. Applications of Hydrogen Peroxide and Derivatives . Royal Society of Chemistry; Cambridge: 1999
  • 4 Trost BM. Science 1991; 254: 1471
    • For recent reviews, see:

    • 5a Applied Homogeneous Catalysis with Organometallic Compounds . 2nd ed. Cornils B, Herrmann WA. Wiley-VCH; Weinheim: 2002
    • 5b Lane BS, Burgess K. Chem. Rev. 2003; 103: 2457
    • 5c Grigoropoulou G, Clark JH, Elings JA. Green Chem. 2003; 5: 1
    • 5d Modern Oxidation Methods . Bäckvall J.-E. Wiley-VCH; Weinheim: 2004
    • 5e Mizuno N, Yamaguchi K, Kamata K. Coord. Chem. Rev. 2005; 249: 1944
    • 6a Payne GB, Williams PH. J. Org. Chem. 1959; 24: 54
    • 6b Venturello C, Alneri E, Ricci M. J. Org. Chem. 1983; 48: 3831
    • 6c Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M. J. Org. Chem. 1988; 53: 3587
    • 7a Sato K, Aoki M, Ogawa M, Hashimoto T, Noyori R. J. Org. Chem. 1996; 61: 8310
    • 7b Sato K, Aoki M, Ogawa M, Hashimoto T, Panyella D, Noyori R. Bull. Chem. Soc. Jpn. 1997; 70: 905
    • 7c Noyori R, Aoki M, Sato K. Chem. Commun. 2003; 1977
    • 8a Sienel G, Rieth R In Ullmann’s Encyclopedia of Industrial Chemistry . Vol. 12, 6th ed. Elvers B, Hawkins S, Russey WE. Wiley-VCH; Weinheim: 2003: 279
    • 8b Eggersdorfer M In Ullmann’s Encyclopedia of Industrial Chemistry . Vol. 35, 6th ed. Wiley-VCH; Weinheim: 2003: 653
    • 8c Swift KA. D. Top. Catal. 2004; 27: 143
    • 8d Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
    • 8e Bicas JL, Dionísio AP, Pastore GM. Chem. Rev. 2009; 109: 4518
    • For recent examples of heterogeneous catalysts, see:

    • 9a van der Waal JC, Rigutto MS, van Bekkum H. Appl. Catal. A 1998; 167: 331
    • 9b Skrobot FC, Valente AA, Neves G, Rosa I, Rocha J, Cavaleiro JA. S. J. Mol. Catal. A: Chem. 2003; 201: 211
    • 9c de Silva JM. S. E, Vinhado FS, Mandelli D, Schuchardt U, Rinaldi R. J. Mol. Catal. A: Chem. 2006; 252: 186
    • 9d Eimer GA, Díaz I, Sastre E, Casuscelli SG, Crivello ME, Herrero ER, Perez-Pariente J. Appl. Catal. A 2008; 343: 77
    • 9e Feliczak-Guzik A, Nowak I. Catal. Today 2009; 142: 288
    • 9f Levecque P, Poelman H, Jacobs P, De Vos D, Sels B. Phys. Chem. Chem. Phys. 2009; 11: 2964
    • 9g Bonon AJ, Mandelli D, Kholdeeva OA, Barmatova MV, Kozlov YN, Shul’pin GB. Appl. Catal. A 2009; 365: 96
    • 9h Qi B, Lu X.-H, Zhou D, Xia Q.-H, Tang Z.-R, Fang S.-Y, Pang T, Dong Y.-L. J. Mol. Catal. A: Chem. 2010; 322: 73
    • For recent examples of polyoxometalate complexes, see:

    • 10a Villa de P AL, Sels BF, De Vos DE, Jacobs PA. J. Org. Chem. 1999; 64: 7267
    • 10b Kamata K, Kotani M, Yamaguchi K, Hikichi S, Mizuno N. Chem.–Eur. J. 2007; 13: 639
    • 10c Maksimchuk NV, Kovalenko KA, Arzumanov SS, Chesalov YA, Melgunov MS, Stepanov AG, Fedin VP, Kholdeeva OA. Inorg. Chem. 2010; 49: 2920
    • For recent examples of homogeneous catalysts, see:

    • 11a Sakaguchi S, Nishiyama Y, Ishii Y. J. Org. Chem. 1996; 61: 5307
    • 11b Battioni P, Renaud JP, Bartoli JF, Reina-Artiles M, Fort M, Mansuy D. J. Am. Chem. Soc. 1988; 110: 8462
    • 11c Lane BS, Vogt M, DeRose VJ, Burgess K. J. Am. Chem. Soc. 2002; 124: 11946
    • 11d Woitiski CB, Kozlov YN, Mandelli D, Nizova GV, Schuchardt U, Shul’pin GB. J. Mol. Catal. A: Chem. 2004; 222: 103
    • 11e Grigoropoulou G, Clark JH. Tetrahedron Lett. 2006; 47: 4461
    • 11f Mandelli D, Steffen RA, Shul’pin GB. React. Kinet. Catal. Lett. 2006; 88: 165
    • 12a Klaas MR, Warwel S. Org. Lett. 1999; 1: 1025
    • 12b Salles L, Brégeault J.-M, Thouvenot R. Surf. Chem. Catal. 2000; 3: 183
    • For recent examples, see:

    • 13a Quenard M, Bonmarin V, Gelbard G. Tetrahedron Lett. 1987; 28: 2237
    • 13b Al-Ajlouni AM, Espenson JH. J. Am. Chem. Soc. 1995; 117: 9243
    • 13c Rudolph J, Reddy KL, Chiang JP, Sharpless KB. J. Am. Chem. Soc. 1997; 119: 6189
    • 13d Zuwei X, Ning Z, Yu S, Kunlan L. Science 2001; 292: 1139
    • 13e Grigoropoulou G, Clark JH, Elings JA. Green Chem. 2003; 5: 1
    • 13f Yang X, Gao S, Xi Z. Org. Process Res. Dev. 2005; 9: 294
    • 13g Tse MK, Klawonn M, Bhor S, Döbler C, Anilkumar G, Hugl H, Mägerlein W, Beller M. Org. Lett. 2005; 7: 987
    • 13h Yeung H.-L, Sham K.-C, Tsang C.-S, Lau T.-C, Kwong H.-L. Chem. Commun. 2008; 3801
    • 13i Matsumoto K, Oguma T, Katsuki T. Angew. Chem. Int. Ed. 2009; 48: 7432
  • 14 Hachiya H, Kon Y, Ono Y, Takumi K, Sasagawa N, Ezaki Y, Sato K. Synlett 2011; 2819
    • 15a Villa de P AL, De Vos DE, de Montes CC, Jacobs PA. Tetrahedron Lett. 1998; 39: 8521
    • 15b Sakamoto T, Pac C. Tetrahedron Lett. 2000; 41: 10009
    • 15c Saladino R, Neri V, Pelliccia AR, Mincione E. Tetrahedron 2003; 59: 7403
    • 15d Saladino R, Andreoni A, Neri V, Crestini C. Tetrahedron 2005; 61: 1069
  • 16 Yamazaki S. Org. Biomol. Chem. 2010; 8: 2377
    • 18a Hou S.-Y, Zhou Z.-H, Lin T.-R, Wan H.-L. Eur. J. Inorg. Chem. 2006; 1670
    • 18b Maheswari PU, Tang X, Hage R, Gamez P, Reedijk J. J. Mol. Catal. A: Chem. 2006; 258: 295
    • 19a Kopperman HL, Hallcher RC. Sr, Riehl A, Carlson RM, Caple R. Tetrahedron 1976; 32: 1621
    • 19b Liu W, Rosazza JP. N. Synth. Commun. 1996; 26: 2731
  • 20 Grigoropoulou G, Clark JH. Tetrahedron Lett. 2006; 47: 4461
    • 21a Hibbert H, Burt CP. J. Am. Chem. Soc. 1925; 47: 2240
    • 21b Böeseken J, Blumberger JS. P. Recl. Trav. Chim. 1925; 44: 90
    • For recent examples, see:

    • 22a Wang X.-B, Yang X, Nicholas JB, Wang L.-S. Science 2001; 294: 1322
    • 22b Zhou J, Santambrogio G, Brümmer M, Moore DT, Wöste L, Meijer G, Neumark DM, Asmis KR. J. Chem. Phys. 2006; 125: 111102
    • 22c Pegram LM, Record MT. Jr. J. Phys. Chem. B 2007; 111: 5411
    • 22d O’Brien JT, Prell JS, Bush MF, Williams ER. J. Am. Chem. Soc. 2010; 132: 8248
    • 23a McDevit WF, Long FA. J. Am. Chem. Soc. 1952; 74: 1773
    • 23b Long FA, McDevit WF. Chem. Rev. 1952; 51: 119
  • 24 Hofmeister F. Arch. Exp. Pathol. Pharmacol. 1887; 24: 247
    • 25a Poulson SR, Harrington RR, Drever JI. Talanta 1999; 48: 633
    • 25b Görgényi M, Dewulf J, Langenhove HV, Héberger K. Chemosphere 2006; 65: 802
  • 26 Pouchert CJ, Behnke J. The Aldrich Library of 13C and 1H FT NMR Spectra . Vol. 1, 1st ed. Aldrich Chemical; Milwaukee: 1993: 377C
  • 27 Kozma E, Cristea I, Müller N. Monatsh. Chem. 2004; 135: 35
  • 28 Kim JH, Lim HJ, Cheon SH. Tetrahedron 2003; 59: 7501
  • 29 Pouchert CJ, Behnke J. The Aldrich Library of 13C and 1H FT NMR Spectra . Vol. 1, 1st ed. Aldrich Chemical; Milwaukee: 1993: 379A
  • 30 Feng JP, Shi ZF, Li Y, Zhang JT, Qi XL, Chen J, Cao XP. J. Org. Chem. 2008; 73: 6873
  • 31 Garcia-Bosch I, Ribas X, Costas M. Adv. Synth. Catal. 2009; 351: 348
  • 32 Piccinini A, Kavanagh SA, Connon PB, Connon SJ. Org. Lett. 2010; 12: 608
  • 33 Pedragosa-Moreau S, Morisseau C, Zylber J, Archelas A, Baratti J, Furstoss R. J. Org. Chem. 1996; 61: 7402
  • 34 Robinson MW. C, Davies AM, Buckle R, Mabbett I, Taylor SH, Graham AE. Org. Biomol. Chem. 2009; 7: 2559
  • 35 Kang B, Kim M, Lee J, Do Y, Chang S. J. Org. Chem. 2006; 71: 6721