Issue 29, 2022

Nanostructured SiO2 material: synthesis advances and applications in rubber reinforcement

Abstract

Silica is a commercially significant material due to its extensive use in widespread applications and products. Synthetic amorphous silica (SAS) is a form of SiO2 that is intentionally manufactured and has been produced and marketed for decades without significant changes in its physico-chemical properties. The industrial production of nanostructured SiO2 is nowadays challenged by the expensive raw material use and high energy consumption. The search for non-petroleum-based fillers such as nanostructured SiO2, which are environmentally friendly, cheap, abundant, renewable, and efficient, has been initiated nowadays. Therefore, a large number of research activities have been carried out so far for the preparation of SAS from potential alternate precursors, i.e., synthetic chemicals, biogenic, and mineral ore resources. Reinforcement of rubbers with nanostructured SiO2 fillers is a process of great practical and technological importance for improving their mechanical, dynamic, and thermal properties. The efficiencies of SiO2 reinforcement correlate with different factors such as filler structure, surface area, rubber–filler interactions, and filler–filler interactions with their effects. This review paper discusses the recent synthesis advances of nanostructured SiO2 from synthetic chemicals, biogenic and mineral ore resources, their physical characteristics, and applications in rubber reinforcement, overcoming challenges. Finally, summary and future work recommendations have been mentioned well for future researchers.

Graphical abstract: Nanostructured SiO2 material: synthesis advances and applications in rubber reinforcement

Article information

Article type
Review Article
Submitted
30 Apr 2022
Accepted
31 May 2022
First published
23 Jun 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 18524-18546

Nanostructured SiO2 material: synthesis advances and applications in rubber reinforcement

A. M. Muhammud and N. K. Gupta, RSC Adv., 2022, 12, 18524 DOI: 10.1039/D2RA02747J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements