Issue 42, 2021

An efficient treatment of biofilm-induced periodontitis using Pt nanocluster catalysis

Abstract

Periodontitis is a common chronic inflammatory disease associated with biofilm formation, gingival recession, and supporting bone loss that can lead to the formation of periodontal pockets and, ultimately, tooth loss. Clinical treatment for periodontitis through scaling and antibiotics still faces the problems of unavoidable bleeding, injury to periodontal tissue, drug resistance, and insufficient treatment. Herein we prepared an injectable anti-periodontitis ointment with catalytic activity that consists of Pt nanocluster (PtNC) modified g-C3N4 (CN), and PEG400/PEG4000, which efficiently treated biofilm-infected periodontitis. PtNCs (<2 nm) with ultralow content (0.07%) were formed on the surface of CN using mild ultraviolet (UV) irradiation. Due to the strong O2 adsorption and activation ability of CN-PtNCs and their mutual electron transfer, they show both oxidase-like and peroxidase-like activities and produce reactive oxygen species (ROS) in the dark. CN-PtNCs showed strong biofilm elimination ability towards Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, benefiting from the good biocompatibility of CN-PtNCs and the injectable property of the PEG400/PEG4000 ointment, the CN-PtNC ointment with high bioavailability successfully treated periodontitis in rats, alleviating inflammation and reducing bone loss, and showed better performance than periocline. Therefore, this catalytic system is promising for an efficient, non-invasive, and antibiotic-free treatment of periodontitis.

Graphical abstract: An efficient treatment of biofilm-induced periodontitis using Pt nanocluster catalysis

Article information

Article type
Paper
Submitted
09 Aug 2021
Accepted
17 Sep 2021
First published
21 Sep 2021

Nanoscale, 2021,13, 17912-17919

An efficient treatment of biofilm-induced periodontitis using Pt nanocluster catalysis

T. Wu, J. Sun, J. Lei, Q. Fan, X. Tang, G. Zhu, Q. Yan, X. Feng and B. Shi, Nanoscale, 2021, 13, 17912 DOI: 10.1039/D1NR05198A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements