Issue 22, 2020

Cu–Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles

Abstract

Efficient generation of high-energy hot carriers from the localized surface plasmon resonance (LSPR) of noble metal (Ag, Au and Cu) nanoparticles is fundamental to many applications based on LSPR, such as photovoltaics and photocatalysis. Theoretically, intra- and inter-band electron transitions in metal nanoparticles are two important channels for the non-radiative decay of LSPR, which determine the generation rate and energy of hot carriers. Therefore, on the basis of first-principles calculations and Drude theory, in this work we explore the potential role of alloying Ag with Cu in modulating the generation rate and energy of hot carriers by studying the intra- and inter-band electron transitions in Cu, Ag and Cu–Ag alloys. It is meaningful to find that the d-sp inter-band electron transition rates are notably increased in Cu–Ag alloys. In particular, the inter-band electron transition rates of Cu0.5Ag0.5 become larger than that of single Cu and Ag across the whole energy range between 1.5 and 3.2 eV. In contrast, intra-band electron transition rates of Cu–Ag alloys become smaller than that of single Cu and Ag. Because the intra-band electron transitions mainly contribute to the resistive loss in metals, which finally results in a thermal effect rather than high-energy hot carriers, the reduction of intra-band electron transitions in Cu–Ag alloy is beneficial for the transforming the energy absorbed by LSPR into high-energy hot carriers through other non-radiative channels. These results indicate that alloying of Ag and Cu can effectively improve the generation rates of high-energy hot carriers through the inter-band electron transition, but decrease the resistive loss through intra-band transition of electrons, which should be used as a guide in optimizing the non-radiative decay processes of LSPR.

Graphical abstract: Cu–Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles

Article information

Article type
Paper
Submitted
18 Mar 2020
Accepted
25 Mar 2020
First published
01 Apr 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 13277-13285

Cu–Ag alloy for engineering properties and applications based on the LSPR of metal nanoparticles

C. Jian, J. Zhang and X. Ma, RSC Adv., 2020, 10, 13277 DOI: 10.1039/D0RA01474E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements