Issue 26, 2015

In-depth study of the phase separation behaviour of a thermoresponsive ionic liquid and a poly(ionic liquid) in concentrated aqueous solution

Abstract

The temperature-induced phase transition behaviors of a thermoresponsive ionic liquid (tributylhexylphosphonium 3-sulfopropylmethacrylate, [P4,4,4,6][MC3S]) and its polymer (poly-tributylhexylphosphonium 3-sulfopropylmethacrylate, P[P4,4,4,6][MC3S]) have been investigated using DSC, optical microscopy, temperature-variable 1H NMR, and FT-IR in combination with two-dimensional analysis methods, including perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2Dcos). We found that there exists a distribution gradient of water molecules in P[P4,4,4,6][MC3S] ranging from hydrophobic backbones to hydrophilic sulfonates. Linked together by covalent bonds, P[P4,4,4,6][MC3S] would form an “urchin-like” structure, which can improve its stability and strengthen the gradient distribution of water. Finally, 2Dcos was employed to elucidate the sequential order of chemical group motions during heating. It is concluded that both [P4,4,4,6][MC3S] and P[P4,4,4,6][MC3S] experience the anionic dominated phase transition process. Moreover, the driving force for the phase transitions is shown to be the dehydration of hydrophobic ester carbonyls.

Graphical abstract: In-depth study of the phase separation behaviour of a thermoresponsive ionic liquid and a poly(ionic liquid) in concentrated aqueous solution

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2015
Accepted
19 May 2015
First published
19 May 2015

Soft Matter, 2015,11, 5253-5264

In-depth study of the phase separation behaviour of a thermoresponsive ionic liquid and a poly(ionic liquid) in concentrated aqueous solution

G. Wang and P. Wu, Soft Matter, 2015, 11, 5253 DOI: 10.1039/C5SM00603A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements