Issue 1, 2014

NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris

Abstract

Live green algae are promising candidates for phytoremediation, but a suitable algal species which bio-accumulates high concentrations of heavy metals, and survives well in industrial water is yet to be identified. Potential metabolic engineering may be applied to improve algal phytoremediation performance, but the metal tolerance and bioaccumulation mechanisms in green algae have to be first fully understood. In this study, NMR-based metabolomics was used to study the effect of different metal species (copper, cadmium and lead) and metal concentrations in green microalgae, Chlorella vulgaris. High Cu concentrations influenced substantial decrease in organic osmolytes (betaine and glycerophosphocholine), which indicated Cu-induced redox imbalance. Accompanying redox imbalance, growth inhibition and photosynthesis impairments in Cu-spiked C. vulgaris revealed a clear relationship between Cu toxicity and redox homeostasis. As these metabolic changes were less prominent in Cd and Pb-spiked cultures, we inferred metal-specific toxicity in C. vulgaris, where redox active Cu2+ is more potent than non-redox active Cd2+ and Pb2+ in causing redox imbalance. Subsequently, ICP-MS and LC-MS/MS quantification shed light on the metal-specific bioaccumulation and detoxification mechanisms. The metal bioconcentration factor (BCF) correlated well with the phytochelatin (PC) content in Cu and Cd-spiked C. vulgaris biomass. High BCF and PC levels with increasing Cu and Cd exposure concentrations indicated that PCs played a significant role in Cu and Cd bioaccumulation and detoxification. In contrast, the undetectable PC levels in Pb-spiked cultures despite high Pb BCF suggest an alternative detoxification mechanism for Pb: either by passive absorption to the algal cell wall or interaction with glutathione (GSH).

Graphical abstract: NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2013
Accepted
25 Oct 2013
First published
28 Oct 2013

Mol. BioSyst., 2014,10, 149-160

NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris

W. Zhang, N. G. J. Tan and S. F. Y. Li, Mol. BioSyst., 2014, 10, 149 DOI: 10.1039/C3MB70425D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements