Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation

Abstract

Disentangling the effects of nanoparticle proximity and size on thermal catalytic performance is challenging with traditional synthetic methods. Here we adapt a modular raspberry-colloid-templating approach to tune the average interparticle distance of PdAu alloy nanoparticles, while preserving all other physicochemical characteristics, including nanoparticle size. By controlling the metal loading and placement of pre-formed nanoparticles within a 3D macroporous SiO2 support and using the hydrogenation of benzaldehyde to benzyl alcohol and toluene as the probe reaction, we report that increasing the interparticle distance (from 12 to 21 nm) substantially enhances selectivity towards benzyl alcohol (from 54% to 99%) without compromising catalytic performance. Combining electron tomography, kinetic evaluation and simulations, we show that interparticle distance modulates the local benzyl alcohol concentration profile between active sites, consequently affecting benzyl alcohol readsorption, which promotes hydrogenolysis to toluene. Our results illustrate the relevance of proximity effects as a mesoscale tool to control the adsorption of intermediates and, hence, catalytic performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic strategy to investigate the effect of NP proximity on catalytic hydrogenation of BA.
Fig. 2: Physical characterization of RCT catalysts.
Fig. 3: Liquid phase BA hydrogenation over RCT catalysts.
Fig. 4: Effect of NP proximity on local BOH concentration profile.

Similar content being viewed by others

Data availability

Data that support the findings of this study are available within the paper, Supplementary Information and Source data files. Additional data are available from the authors upon reasonable request. Source data are provided with this paper.

Code availability

The MATLAB script used to extract the centre-to-centre interparticle distance from the processed electron tomographic reconstructions is provided in Supplementary Note 1.

References

  1. Rothenberg, G. Catalysis: Concepts and Green Applications (Wiley-VCH, 2008).

  2. Friend, C. M. & Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 50, 517–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Munnik, P., de Jongh, P. E. & de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687–6718 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  5. Shi, Y. et al. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121, 649–735 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y. et al. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. J. Mater. Chem. A 5, 8825–8846 (2017).

    Article  ADS  CAS  Google Scholar 

  8. Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 3, 372–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Holm, A. et al. Nanoscale spatial distribution of supported nanoparticles controls activity and stability in powder catalysts for CO oxidation and photocatalytic H2 evolution. J. Am. Chem. Soc. 142, 14481–14494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elias, R. C. & Linic, S. Elucidating the roles of local and nonlocal rate enhancement mechanisms in plasmonic catalysis. J. Am. Chem. Soc. 144, 19990–19998 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Keijzer, P. H., van den Reijen, J. E., Keijzer, C. J., de Jong, K. P. & de Jongh, P. E. Influence of atmosphere, interparticle distance and support on the stability of silver on α-alumina for ethylene epoxidation. J. Catal. 405, 534–544 (2022).

    Article  CAS  Google Scholar 

  12. Goodman, E. D. et al. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena. Nanoscale 13, 930–938 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Yin, P. et al. Quantification of critical particle distance for mitigating catalyst sintering. Nat. Commun. 12, 4865 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    Article  CAS  Google Scholar 

  15. Aitbekova, A. et al. Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1,100 °C. Nat. Mater. 21, 1290–1297 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Prieto, G., Zečević, J., Friedrich, H., de Jong, K. P. & de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kumar, S. & Zou, S. Electrooxidation of CO on uniform arrays of Au nanoparticles: effects of particle size and interparticle spacing. Langmuir 25, 574–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Inaba, M. et al. The oxygen reduction reaction on Pt: why particle size and interparticle distance matter. ACS Catal. 11, 7144–7153 (2021).

    Article  CAS  Google Scholar 

  19. Nesselberger, M. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12, 919–924 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Fortunato, G. V. et al. Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide. J. Phys. Chem. C 122, 15878–15885 (2018).

    Article  CAS  Google Scholar 

  21. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article  CAS  Google Scholar 

  22. Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075–1080 (2016).

    Article  CAS  Google Scholar 

  23. Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Dai, J. & Zhang, H. Recent advances in catalytic confinement effect within micro/meso‐porous crystalline materials. Small 17, 2005334 (2021).

    Article  CAS  Google Scholar 

  26. Le, T. T. et al. Elemental zoning enhances mass transport in zeolite catalysts for methanol to hydrocarbons. Nat. Catal. 6, 254–265 (2023).

    Article  CAS  Google Scholar 

  27. Liu, J. et al. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem. Soc. Rev. 51, 1045–1097 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, J., Wang, B., Nikolla, E. & Medlin, J. W. Directing reaction pathways through controlled reactant binding at Pd–TiO2 interfaces. Angew. Chem. Int. Ed. 56, 6594–6598 (2017).

    Article  CAS  Google Scholar 

  29. Durndell, L. J. et al. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation. Sci. Rep. 5, 9425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parlett, C. M. A., Bruce, D. W., Hondow, N. S., Lee, A. F. & Wilson, K. Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas. ACS Catal. 1, 636–640 (2011).

    Article  CAS  Google Scholar 

  31. Cargnello, M. Colloidal nanocrystals as building blocks for well-defined heterogeneous catalysts. Chem. Mater. 31, 576–596 (2019).

    Article  CAS  Google Scholar 

  32. Losch, P. et al. Colloidal nanocrystals for heterogeneous catalysis. Nano Today 24, 15–47 (2019).

    Article  CAS  Google Scholar 

  33. Cargnello, M. et al. Efficient removal of organic ligands from supported nanocrystals by fast thermal annealing enables catalytic studies on well-defined active phases. J. Am. Chem. Soc. 137, 6906–6911 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lu, L., Zou, S. & Fang, B. The critical impacts of ligands on heterogeneous nanocatalysis: a review. ACS Catal. 11, 6020–6058 (2021).

    Article  CAS  Google Scholar 

  35. Collins, G., Davitt, F., O’Dwyer, C. & Holmes, J. D. Comparing thermal and chemical removal of nanoparticle stabilizing ligands: effect on catalytic activity and stability. ACS Appl. Nano Mater. 1, 7129–7138 (2018).

    Article  CAS  Google Scholar 

  36. Eppler, A. S., Rupprechter, G., Guczi, L. & Somorjai, G. A. Model catalysts fabricated using electron beam lithography and pulsed laser deposition. J. Phys. Chem. B 101, 9973–9977 (1997).

    Article  CAS  Google Scholar 

  37. Shirman, E. et al. Modular design of advanced catalytic materials using hybrid organic–inorganic raspberry particles. Adv. Funct. Mater. 28, 1704559 (2018).

    Article  MathSciNet  Google Scholar 

  38. Singh, N. et al. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J. Catal. 382, 372–384 (2020).

    Article  CAS  Google Scholar 

  39. Bhanushali, J. T., Kainthla, I., Keri, R. S. & Nagaraja, B. M. Catalytic hydrogenation of benzaldehyde for selective synthesis of benzyl alcohol: a review. ChemistrySelect 1, 3839–3853 (2016).

    Article  CAS  Google Scholar 

  40. Kaiser, S. K. et al. Identifying the optimal Pd ensemble size in dilute PdAu alloy nanomaterials for benzaldehyde hydrogenation. ACS Catal. 13, 12092–12103 (2023).

    Article  CAS  Google Scholar 

  41. Song, Y. et al. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. J. Catal. 359, 68–75 (2018).

    Article  CAS  Google Scholar 

  42. Cheng, G. et al. Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium. Nat. Catal. 4, 976–985 (2021).

    Article  CAS  Google Scholar 

  43. Procházková, D., Zámostný, P., Bejblová, M., Červený, L. & Čejka, J. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts. Appl. Catal. A 332, 56–64 (2007).

    Article  Google Scholar 

  44. Hoeven, J. E. S. et al. On the origin of sinter‐resistance and catalyst accessibility in raspberry‐colloid‐templated catalyst design. Adv. Funct. Mater. 31, 2106876 (2021).

    Article  Google Scholar 

  45. Batista, A. T. F. et al. Atomic scale insight into the formation, size, and location of platinum nanoparticles supported on γ-alumina. ACS Catal. 10, 4193–4204 (2020).

    Article  CAS  Google Scholar 

  46. Meier, J. C. et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tournus, F. Random nanoparticle deposition: inter-particle distances in 2D, 3D, and multilayer samples. J. Nanopart. Res. 13, 5211–5223 (2011).

    Article  ADS  CAS  Google Scholar 

  48. Okamoto, M., Hirao, T. & Yamaai, T. Polymers as novel modifiers for supported metal catalyst in hydrogenation of benzaldehydes. J. Catal. 276, 423–428 (2010).

    Article  CAS  Google Scholar 

  49. van der Hoeven, J. E. S. et al. Entropic control of HD exchange rates over dilute Pd-in-Au alloy nanoparticle catalysts. ACS Catal. 11, 6971–6981 (2021).

    Article  Google Scholar 

  50. Luneau, M. et al. Achieving high selectivity for alkyne hydrogenation at high conversions with compositionally optimized PdAu nanoparticle catalysts in raspberry colloid-templated SiO2. ACS Catal. 10, 441–450 (2020).

    Article  CAS  Google Scholar 

  51. Hao, Y., Pischetola, C., Cárdenas-Lizana, F. & Keane, M. A. Selective liquid phase hydrogenation of benzaldehyde to benzyl alcohol over alumina supported gold. Catal. Lett. 150, 881–887 (2020).

    Article  CAS  Google Scholar 

  52. Mohamed‐Ibrahim, N. A. B. et al. Applying magnetic‐responsive nanocatalyst–liquid interface for active molecule manipulation to boost catalysis beyond diffusion limit. ChemCatChem 14, e202200036 (2022).

    Article  Google Scholar 

  53. Cui, T. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape‐selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

    Article  CAS  Google Scholar 

  54. Shirman, E., Shirman, T., Aizenberg, M. & Aizenberg, J. Enhanced catalytic materials with partially embedded catalytic nanoparticles. US patent 11,590,483 B2 (2023).

  55. Kolle, M., Shirman, T., Aizenberg, M., Vogel, N. & Aizenberg, J. High-surface area functional material coated structures. US patent 11,325,114 B2 (2022).

  56. Kao, K. et al. A general approach for monolayer adsorption of high weight loadings of uniform nanocrystals on oxide supports. Angew. Chem. Int. Ed. 60, 7971–7979 (2021).

    Article  CAS  Google Scholar 

  57. Casavola, M., Hermannsdörfer, J., De Jonge, N., Dugulan, A. I. & De Jong, K. P. Fabrication of Fischer–Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes. Adv. Funct. Mater. 25, 5309–5319 (2015).

    Article  CAS  Google Scholar 

  58. Santos, H. & Costa, M. Analysis of the mass transfer controlled regime in automotive catalytic converters. Int. J. Heat. Mass Transf. 51, 41–51 (2008).

    Article  CAS  Google Scholar 

  59. Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Climent, M. J., Corma, A., Iborra, S. & Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 4, 870–891 (2014).

    Article  CAS  Google Scholar 

  61. Isaacs, M. A. et al. A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions. Nat. Catal. 3, 921–931 (2020).

    Article  CAS  Google Scholar 

  62. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Zou, H. et al. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat. Commun. 12, 4968 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zou, N. et al. Cooperative communication within and between single nanocatalysts. Nat. Chem. 10, 607–614 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Cheng, K. et al. Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science 377, 204–208 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Xiao, J. et al. Tandem catalysis with double-shelled hollow spheres. Nat. Mater. 21, 572–579 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Parlett, C. M. A. et al. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat. Mater. 15, 178–182 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Piella, J., Bastús, N. G. & Puntes, V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 28, 1066–1075 (2016).

    Article  CAS  Google Scholar 

  69. Vogel, N., de Viguerie, L., Jonas, U., Weiss, C. K. & Landfester, K. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).

    Article  CAS  Google Scholar 

  70. Shi, W., Sahoo, Y., Swihart, M. T. & Prasad, P. N. Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610–1617 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. van der Hoeven, J. E. S. et al. Structural control over bimetallic core–shell nanorods for surface-enhanced raman spectroscopy. ACS Omega 6, 7034–7046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  74. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Sankar, M. et al. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun. 5, 3332 (2014).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC0012573 (S.K.K. and J.A.), by the US Defense Threat Reduction Agency (DTRA) under award number HDTR1211001612 (K.R.G.L., H.W., S.G. and M.A.), and by the Starting PI Fund of the Electron Microscopy Center at Utrecht University (M.P.P. and J.E.S.v.d.H.). Electron microscopy, TGA, zeta potential measurements, infrared spectroscopy, XPS and CO chemisorption measurements were performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF ECCS award number 1541959. K.R.G.L., M.A. and J.A. thank C. Friend for the use of her laboratory facilities to conduct the batch hydrogenation catalytic reactions. K.R.G.L. acknowledges financial support from the Agency for Science, Technology and Research (A*STAR) Singapore National Science Scholarship (PhD). S.K.K. acknowledges the Swiss National Science Foundation for the award of an Early Postdoc. Mobility fellowship (SNSF grant number P2EZP2_199972). K.R.G.L. thanks R. J. Madix, J. Gardener, S. Li, H. G. Lin and J. Hungerford for the helpful discussions on the analysis of catalytic, STEM–EDX, small-angle X-ray scattering, XPS and CO chemisorption data, respectively.

Author information

Authors and Affiliations

Authors

Contributions

K.R.G.L. and S.K.K. contributed equally to this work. K.R.G.L. conceived the research idea and coordinated the work. K.R.G.L., S.K.K., M.A. and J.A. designed the experiments. K.R.G.L., supported by S.G., designed, synthesized, characterized and analysed the materials. K.R.G.L., guided by S.K.K., conducted catalysis testing and kinetic modelling and analysed the results. M.P.P., supervised by J.E.S.v.d.H., performed the electron tomography experiments and analysed the data. K.R.G.L., S.G. and M.P.P. calculated the interparticle distances. H.W. performed the COMSOL modelling. H.W. and K.R.G.L. analysed the COMSOL modelling results. K.R.G.L. and S.K.K. wrote the manuscript with input from all the authors. J.A. supervised the entire work. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Joanna Aizenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yue Liu, Xin Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–8, Figs. 1–19, Tables 1–6 and references.

Supplementary Video 1

Reconstructed dark-field STEM tomogram of 5PdAu/SiO2 RCT catalyst. NPs are shown as bright spots on the grey SiO2 support.

Supplementary Video 2

Reconstructed dark-field STEM tomogram of 20PdAu/SiO2 RCT catalyst. NPs are shown as bright spots on the grey SiO2 support.

Supplementary Video 3

STEM tilt series of 5PdAu/SiO2 RCT catalyst used for tomographic reconstruction. NPs are shown as bright spots on the grey SiO2 support.

Supplementary Video 4

STEM tilt series of 20PdAu/SiO2 RCT catalyst used for tomographic reconstruction. NPs are shown as bright spots on the grey SiO2 support.

Source data

Source Data Fig. 2

Quantitative numerical data shown in Fig. 2.

Source Data Fig. 3

Quantitative numerical data shown in Fig. 3.

Source Data Fig. 4

Quantitative numerical data shown in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, K.R.G., Kaiser, S.K., Wu, H. et al. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nat Catal 7, 172–184 (2024). https://doi.org/10.1038/s41929-023-01104-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01104-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing