Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Substrate channelling as an approach to cascade reactions

Abstract

Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Product diffusion from a single catalytic active site.
Figure 2: Substrate channelling by intramolecular tunnel.
Figure 3: Substrate channelling by electrostatic guidance.
Figure 4: Substrate channelling by chemical swing arm.
Figure 5: Biochemical methods of evaluating substrate channelling.
Figure 6: Nanostructured tandem catalyst for ethylene hydroformylation with methanol.
Figure 7: Engineering substrate channelling by chemical swing arms.
Figure 8: Active-site isolation in core–shell nanoparticles.

Similar content being viewed by others

Elizabeth L. Bell, William Finnigan, … Sabine L. Flitsch

Accession codes

Accessions

Protein Data Bank

References

  1. Spivey, H. O. & Ovadi, J. Substrate channeling. Methods 19, 306–321 (1999).

    CAS  PubMed  Google Scholar 

  2. Miles, E. W., Rhee, S. & Davies, D. R. The molecular basis of substrate channeling. J. Biol. Chem. 274, 12193–12196 (1999).

    CAS  PubMed  Google Scholar 

  3. Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nature Chem. 3, 372–376 (2011).

    CAS  Google Scholar 

  4. Zhao, M. T. et al. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 136, 1738–1741 (2014).

    CAS  PubMed  Google Scholar 

  5. Motokura, K. et al. An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions. J. Am. Chem. Soc. 127, 9674–9675 (2005).

    CAS  PubMed  Google Scholar 

  6. Yang, Y. et al. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem. Int. Ed. 51, 9164–9168 (2012).

    CAS  Google Scholar 

  7. Li, P. et al. Core-shell structured mesoporous silica as acid-base bifunctional catalyst with designated diffusion path for cascade reaction sequences. Chem. Commun. 48, 10541–10543 (2012).

    CAS  Google Scholar 

  8. Zhang, Y. H. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 29, 715–725 (2011).

    CAS  PubMed  Google Scholar 

  9. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnol. 27, 753–759 (2009).

    CAS  Google Scholar 

  10. Conrado, R. J. et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 40, 1879–1889 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    CAS  PubMed  Google Scholar 

  12. Fu, J. L., Liu, M. H., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilner, O. I., Shimron, S., Weizmann, Y., Wang, Z. G. & Willner, I. Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett. 9, 2040–2043 (2009).

    CAS  PubMed  Google Scholar 

  14. Muller, J. & Niemeyer, C. M. DNA-directed assembly of artificial multienzyme complexes. Biochem. Biophys. Res. Commun. 377, 62–67 (2008).

    PubMed  Google Scholar 

  15. Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. Int. Ed. 46, 7378–7382 (2007).

    CAS  Google Scholar 

  16. Wang, X. L. et al. Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. ACS Catal. 4, 962–972 (2014).

    CAS  Google Scholar 

  17. Bauler, P., Huber, G., Leyh, T. & McCammon, J. A. Channeling by proximity: the catalytic advantages of active site colocalization using brownian dynamics. J. Phys. Chem. Lett. 1, 1332–1335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eun, C., Kekenes-Huskey, P. M., Metzger, V. T. & McCammon, J. A. A model study of sequential enzyme reactions and electrostatic channeling. J. Chem. Phys. 140, 105101 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Knighton, D. R. et al. Structure of and kinetic channeling in bifunctional dihydrofolate reductase-thymidylate synthase. Nature Struct. Biol. 1, 186–194 (1994).

    CAS  PubMed  Google Scholar 

  20. Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. & Davies, D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17857–17871 (1988).

    CAS  PubMed  Google Scholar 

  21. Wang, J. J. et al. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex. J. Biol. Chem. 289, 15215–15230 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, C. et al. Autonomic molecular transport by polymer films containing programmed chemical potential gradients. J. Am. Chem. Soc. 137, 5066–5073 (2015).

    CAS  PubMed  Google Scholar 

  23. Fu, Y. M. et al. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J. Am. Chem. Soc. 135, 696–702 (2013).

    CAS  PubMed  Google Scholar 

  24. Yan, J. C. et al. Growth of patterned nanopore arrays of anodic aluminum oxide. Adv. Mater. 15, 2015–2018 (2003).

    CAS  Google Scholar 

  25. Worsdorfer, B., Woycechowsky, K. J. & Hilvert, D. Directed evolution of a protein container. Science 331, 589–592 (2011).

    PubMed  Google Scholar 

  26. Salles, A. G., Zarra, S., Turner, R. M. & Nitschke, J. R. A self-organizing chemical assembly line. J. Am. Chem. Soc. 135, 19143–19146 (2013).

    CAS  PubMed  Google Scholar 

  27. Filice, M. & Palomo, J. M. Cascade reactions catalyzed by bionanostructures. ACS Catal. 4, 1588–1598 (2014).

    CAS  Google Scholar 

  28. Chng, L. L., Erathodiyil, N. & Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 46, 1825–1837 (2013).

    CAS  PubMed  Google Scholar 

  29. Margelefsky, E. L., Zeidan, R. K. & Davis, M. E. Cooperative catalysis by silica-supported organic functional groups. Chem. Soc. Rev. 37, 1118–1126 (2008).

    CAS  PubMed  Google Scholar 

  30. Kim, E. Y. & Tullman-Ercek, D. Engineering nanoscale protein compartments for synthetic organelles. Curr. Opin. Biotechnol. 24, 627–632 (2013).

    CAS  PubMed  Google Scholar 

  31. Schoffelen, S. & van Hest, J. C. M. Chemical approaches for the construction of multi-enzyme reaction systems. Curr. Opin. Struc. Biol. 23, 613–621 (2013).

    CAS  Google Scholar 

  32. Conrado, R. J., Varner, J. D. & DeLisa, M. P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    CAS  PubMed  Google Scholar 

  33. Srere, P. A. The metabolon. Trends Biochem. Sci. 10, 109–110 (1985).

    Google Scholar 

  34. Srere, P. A. Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56, 89–124 (1987).

    CAS  PubMed  Google Scholar 

  35. Srere, P. & Mosbach, K. Metabolic compartmentalization: symbiotic, organellar, multienzymatic, and microenvironmental. Annu. Rev. Microbiol. 28, 61–84 (1974).

    CAS  PubMed  Google Scholar 

  36. Srere, P. A., Mattiasson, B. & Mosbach, K. An immobilized three-enzyme system: a model for microenvironmental compartemtnation in mitochondria. Proc. Natl Acad. Sci. USA 70, 2534–2538 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ovádi, J. Physiological significance of metabolic channelling. J. Theor. Biol. 152, 1–22 (1991).

    PubMed  Google Scholar 

  38. Lin, J.-L., Palomec, L. & Wheeldon, I. Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions. ACS Catal. 4, 505–511 (2014).

    CAS  Google Scholar 

  39. Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    CAS  PubMed  Google Scholar 

  40. Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nature Chem. Biol. 8, 527–535 (2012).

    CAS  Google Scholar 

  41. Anderson, K. S., Miles, E. W. & Johnson, K. A. Serine modulates substrate channeling in tryptophan synthase — a novel intersubunit triggering mechanism. J. Biol. Chem. 266, 8020–8033 (1991).

    CAS  PubMed  Google Scholar 

  42. Dunn, M. F. et al. The tryptophan synthase bienzyme complex transfers indole between the alpha-sites and beta-sites via a 25–30 a long tunnel. Biochemistry 29, 8598–8607 (1990).

    CAS  PubMed  Google Scholar 

  43. Carere, J., McKenna, S. E., Kimber, M. S. & Seah, S. Y. K. Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis. Biochemistry 52, 3502–3511 (2013).

    CAS  PubMed  Google Scholar 

  44. Thoden, J. B., Raushel, F. M., Benning, M. M., Rayment, I. & Holden, H. M. The structure of carbamoyl phosphate synthetase determined to 2.1 angstrom resolution. Acta Crystallogr. D 55, 8–24 (1999).

    CAS  PubMed  Google Scholar 

  45. Huang, X. Y. & Raushel, F. M. Restricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase. J. Biol. Chem. 275, 26233–26240 (2000).

    CAS  PubMed  Google Scholar 

  46. Krahn, J. M. et al. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36, 11061–11068 (1997).

    CAS  PubMed  Google Scholar 

  47. Huang, X. Y., Holden, H. M. & Raushel, F. M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70, 149–180 (2001).

    CAS  PubMed  Google Scholar 

  48. Raushel, F. M., Thoden, J. B. & Holden, H. M. Enzymes with molecular tunnels. Acc. Chem. Res. 36, 539–548 (2003).

    CAS  PubMed  Google Scholar 

  49. Elcock, A. H., Huber, G. A. & McCammon, J. A. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment. Biochemistry 36, 16049–16058 (1997).

    CAS  PubMed  Google Scholar 

  50. Elcock, A. H., Potter, M. J., Matthews, D. A., Knighton, D. R. & McCammon, J. A. Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase. J. Mol. Biol. 262, 370–374 (1996).

    CAS  PubMed  Google Scholar 

  51. Lindbladh, C. et al. Preparation and kinetic characterization of a fusion protein of yeast mitochondrial citrate synthase and malate-dehydrogenase. Biochemistry 33, 11692–11698 (1994).

    CAS  PubMed  Google Scholar 

  52. Wu, F. & Minteer, S. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew. Chem. Int. Ed. 54, 1851–1854 (2015).

    CAS  Google Scholar 

  53. Guynn, R. W., Gelberg, H. J. & Veech, R. L. Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions. J. Biol. Chem. 248, 6957–6965 (1973).

    CAS  PubMed  Google Scholar 

  54. Smolle, M. & Lindsay, J. G. Molecular architecture of the pyruvate dehydrogenase complex: bridging the gap. Biochem. Soc. Trans. 34, 815–818 (2006).

    CAS  PubMed  Google Scholar 

  55. Smolle, M. et al. A new level of architectural complexity in the human pyruvate dehydrogenase complex. J. Biol. Chem. 281, 19772–19780 (2006).

    CAS  PubMed  Google Scholar 

  56. Zhou, Z. H., McCarthy, D. B., O'Connor, C. M., Reed, L. J. & Stoops, J. K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl Acad. Sci. USA 98, 14802–14807 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Perham, R. N. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69, 961–1004 (2000).

    CAS  PubMed  Google Scholar 

  58. Leibundgut, M., Maier, T., Jenni, S. & Ban, N. The multienzyme architecture of eukaryotic fatty acid synthases. Curr. Opin. Struc. Biol. 18, 714–725 (2008).

    CAS  Google Scholar 

  59. Ishikawa, M., Tsuchiya, D., Oyama, T., Tsunaka, Y. & Morikawa, K. Structural basis for channelling mechanism of a fatty acid beta-oxidation multienzyme complex. EMBO J. 23, 2745–2754 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Winkel-Shirley, B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plantarum 107, 142–149 (1999).

    CAS  Google Scholar 

  61. Jorgensen, K. et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant. Biol. 8, 280–291 (2005).

    CAS  PubMed  Google Scholar 

  62. Winkel, B. S. Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85–107 (2004).

    CAS  PubMed  Google Scholar 

  63. Sweetlove, L. J. & Fernie, A. R. The spatial organization of metabolism within the plant cell. Annu. Rev. Plant Biol. 64, 723–746 (2013).

    CAS  PubMed  Google Scholar 

  64. Geck, M. K. & Kirsch, J. F. A novel, definitive test for substrate channeling illustrated with the aspartate aminotransferase malate dehydrogenase system. Biochemistry 38, 8032–8037 (1999).

    CAS  PubMed  Google Scholar 

  65. Trujillo, M., Donald, R. G. K, Roos, D. S, Greene, P. J. & Santi, D. V. Heterologous expression and characterization of the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of Toxoplasma gondii. Biochemistry 35, 6366–6374 (1996).

    CAS  PubMed  Google Scholar 

  66. Sharma, H., Landau, M. J., Vargo, M. A., Spasov, K. A. & Anderson, K. S. First three-dimensional structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling. Biochemistry 52, 7305–7317 (2013).

    CAS  PubMed  Google Scholar 

  67. Idan, O. & Hess, H. Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 7, 8658–8665 (2013).

    CAS  PubMed  Google Scholar 

  68. Ljungcrantz, P. et al. Construction of an artificial bifunctional enzyme, beta-galactosidase/galactose dehydrogenase, exhibiting efficient galactose channeling. Biochemistry 28, 8786–8792 (1989).

    CAS  PubMed  Google Scholar 

  69. Pettersson, H. & Pettersson, G. Kinetics of the coupled reaction catalysed by a fusion protein of beta-galactosidase and galactose dehydrogenase. Biochim. Biophys. Acta 1549, 155–160 (2001).

    CAS  PubMed  Google Scholar 

  70. Climent, M. J., Corma, A., Iborra, S. & Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 4, 870–891 (2014).

    CAS  Google Scholar 

  71. Kung, H. H. & Kung, M. C. Inspiration from nature for heterogeneous catalysis. Catal. Lett. 144, 1643–1652 (2014).

    CAS  Google Scholar 

  72. Muschiol, J. Cascade catalysis — strategies and challenges en route to preparative synthetic biology. Chem. Commun. 51, 5798–5811 (2015).

    CAS  Google Scholar 

  73. Broadwater, S. J., Roth, S. L., Price, K. E., Kobaslija, M. & McQuade, D. T. One-pot multi-step synthesis: a challenge spawning innovation. Org. Biomol. Chem. 3, 2899–2906 (2005).

    CAS  PubMed  Google Scholar 

  74. Massong, H., Wang, H. S., Samjeske, G. & Baltruschat, H. The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO. Electrochim. Acta 46, 701–707 (2000).

    CAS  Google Scholar 

  75. Wang, N. & McCammon, J. A. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Protein Sci. 25, 79–86 (2016).

    CAS  PubMed  Google Scholar 

  76. Lin, J.-L. & Wheeldon, I. Kinetic enhancements in DNA–enzyme nanostructures mimic the sabatier principle. ACS Catal. 3, 560–564 (2013).

    CAS  Google Scholar 

  77. Gao, Y. et al. Tuning enzyme kinetics through designed intermolecular interactions far from the active site. ACS Catal. 5, 2149–2153 (2015).

    CAS  Google Scholar 

  78. Murata, H., Cummings, C. S., Koepsel, R. R. & Russell, A. J. Rational tailoring of substrate and inhibitor affinity via ATRP polymer-based protein engineering. Biomacromolecules 15, 2817–2823 (2014).

    CAS  PubMed  Google Scholar 

  79. You, C. C., Agasti, S. S., De, M., Knapp, M. J. & Rotello, V. M. Modulation of the catalytic behavior of alpha-chymotrypsin at monolayer-protected nanoparticle surfaces. J. Am. Chem. Soc. 128, 14612–14618 (2006).

    CAS  PubMed  Google Scholar 

  80. Fu, J. L. et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nature Nanotech. 9, 531–536 (2014).

    CAS  Google Scholar 

  81. Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotech. 4, 249–254 (2009).

    CAS  Google Scholar 

  82. Zhang, F., Jiang, H. Y., Li, X. Y., Wu, X. T. & Li, H. X. Amine-functionalized GO as an active and reusable acid-base bifunctional catalyst for one-pot cascade reactions. ACS Catal. 4, 394–401 (2014).

    CAS  Google Scholar 

  83. van Dongen, S. F. M., Nallani, M., Cornelissen, J. L. L. M., Nolte, R. J. M. & van Hest, J. C. M. A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. Chem. Eur. J. 15, 1107–1114 (2009).

    CAS  PubMed  Google Scholar 

  84. Huang, X., Li, M. & Mann, S. Membrane-mediated cascade reactions by enzyme-polymer proteinosomes. Chem. Commun. 50, 6278–6280 (2014).

    CAS  Google Scholar 

  85. Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 53, 146–150 (2014).

    CAS  Google Scholar 

  86. Patterson, D. P., Schwarz, B., Waters, R. S., Gedeon, T. & Douglas, T. Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem. Biol. 9, 359–365 (2014).

    CAS  PubMed  Google Scholar 

  87. Park, M., Sun, Q., Liu, F., DeLisa, M. P. & Chen, W. Positional assembly of enzymes on bacterial outer membrane vesicles for cascade reactions. PLoS ONE 9, e97103 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Glasgow, J. E., Asensio, M. A., Jakobson, C. M., Francis, M. B. & Tullman-Ercek, D. Influence of electrostatics on small molecule flux through a protein nanoreactor. ACS Synth. Biol. 4, 1011–1019 (2015).

    CAS  PubMed  Google Scholar 

  89. Li, Z. X. et al. Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chem. Commun. 50, 12465–12468 (2014).

    CAS  Google Scholar 

  90. Buchner, A., Tostevin, F. & Gerland, U. Clustering and optimal arrangement of enzymes in reaction-diffusion systems. Phys. Rev. Lett. 110, 208104 (2013).

    PubMed  Google Scholar 

  91. Alam-Nazki, A. & Krishnan, J. Spatial control of biochemical modification cascades and pathways. Biophys. J. 108, 2912–2924 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Roberts, C. C. & Chang, C.-A. Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration. J. Chem. Theory Comput. 11, 286–292 (2015).

    CAS  PubMed  Google Scholar 

  93. Freeman, R., Sharon, E., Teller, C. & Willner, I. Control of biocatalytic transformations by programmed DNA assemblies. Chem. Eur. J. 16, 3690–3698 (2010).

    CAS  PubMed  Google Scholar 

  94. Xin, L., Zhou, C., Yang, Z. & Liu, D. Regulation of an enzyme cascade reaction by a DNA machine. Small 9, 3088–3091 (2013).

    CAS  PubMed  Google Scholar 

  95. Van Nguyen, K., Giroud, F. & Minteer, S. D. Improved bioelectrocatalytic oxidation of sucrose in a biofuel cell with an enzyme cascade assembled on a DNA scaffold. J. Electrochem. Soc. 161, H930–H933 (2014).

    CAS  Google Scholar 

  96. Moehlenbrock, M. J., Toby, T. K., Waheed, A. & Minteer, S. D. Metabolon catalyzed pyruvate/air biofuel cell. J. Am. Chem. Soc. 132, 6288–6289 (2010).

    CAS  PubMed  Google Scholar 

  97. Liu, F., Banta, S. & Chen, W. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chem. Commun. 49, 3766–3768 (2013).

    CAS  Google Scholar 

  98. Hirakawa, H. & Nagamune, T. Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. ChemBioChem 11, 1517–1520 (2010).

    CAS  PubMed  Google Scholar 

  99. Haga, T., Hirakawa, H. & Nagamune, T. Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker. PLoS ONE 8, e75114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bayer, E. A., Morag, E. & Lamed, R. The cellulosome — a treasure-trove for biotechnology. Trends Biotechnol. 12, 379–386 (1994).

    CAS  PubMed  Google Scholar 

  101. You, C., Myung, S. & Zhang, Y. H. P. Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew. Chem. Int. Ed. 51, 8787–8790 (2012).

    CAS  Google Scholar 

  102. You, C. & Zhang. Y. H. P. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth. Biol. 2, 102–110 (2013).

    CAS  PubMed  Google Scholar 

  103. You, C. & Zhang, Y. H. P. Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling. ACS Synth. Biol. 3, 380–386 (2014).

    CAS  PubMed  Google Scholar 

  104. You, C. et al. Enzymatic transformation of nonfood biomass to starch. Proc. Natl Acad. Sci. USA 110, 7182–7187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Baek, J. M. et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol. Bioeng. 110, 2790–2794 (2013).

    CAS  PubMed  Google Scholar 

  106. Wang, Y. C. & Yu, O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J. Biotechnol. 157, 258–260 (2012).

    CAS  PubMed  Google Scholar 

  107. Moon, T. S., Dueber, J. E., Shiue, E. & Prather, K. L. J. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12, 298–305 (2010).

    CAS  PubMed  Google Scholar 

  108. Lee, J. H. et al. Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system. Appl. Environ. Microbiol. 79, 774–782 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sachdeva, G., Garg, A., Godding, D., Way, J. C. & Silver, P. A. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42, 9493–9503 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Baillie, G. S. Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J. 276, 1790–1799 (2009).

    CAS  PubMed  Google Scholar 

  111. McCormick, K. & Baillie, G. S. Compartmentalisation of second messenger signalling pathways. Curr. Opin. Genet. Dev. 27, 20–25 (2014).

    CAS  PubMed  Google Scholar 

  112. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nature Biotechnol. 32, 1011–1018 (2014).

    CAS  Google Scholar 

  113. Schneider, T. R. et al. Loop closure and intersubunit communication in tryptophan synthase. Biochemistry 37, 5394–5406 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Army Research Office MURI (#W911NF1410263). We thank D. P. Hickey and F. Wu for help with illustrations. I.W. is a member of the University of California, Riverside, Center for Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Wheeldon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeldon, I., Minteer, S., Banta, S. et al. Substrate channelling as an approach to cascade reactions. Nature Chem 8, 299–309 (2016). https://doi.org/10.1038/nchem.2459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing