Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunology of type 1 diabetes

Abstract

Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk genes for type 1 diabetes encode proteins that impact T cell development and function.
Fig. 2: The influence of the microbiome in T1D.
Fig. 3: Insulitis and CD8+ T cells in type 1 diabetes.
Fig. 4: T cell phenotypes associated with B cell help are linked to T1D.
Fig. 5: Disease-relevant hybrid insulin peptides (HIPs).
Fig. 6: Drugs and mechanisms that have shown efficacy in T1D.
Fig. 7: Mechanism of action of the CD3-targeting monoclonal antibody teplizumab.

Similar content being viewed by others

References

  1. Gregory, G. A. et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 10, 741–760 (2022).

    Article  PubMed  Google Scholar 

  2. Evans-Molina, C. et al. β Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight 3, e120877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sims, E. K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci. Transl. Med. 13, eabc8980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turtinen, M. et al. Characteristics of familial type 1 diabetes: effects of the relationship to the affected family member on phenotype and genotype at diagnosis. Diabetologia 62, 2025–2039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Redondo, M. J., Steck, A. K. & Pugliese, A. Genetics of type 1 diabetes. Pediatr. Diabetes 19, 346–353 (2018).

    Article  PubMed  Google Scholar 

  6. Mrena, S. et al. Models for predicting type 1 diabetes in siblings of affected children. Diabetes Care 29, 662–667 (2006).

    Article  PubMed  Google Scholar 

  7. Dorman, J. S. et al. Type 1 diabetes in offspring of parents with type 1 diabetes: the tip of an autoimmune iceberg? Pediatr. Diabetes 1, 17–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Noble, J. A. & Valdes, A. M. Genetics of the HLA region in the prediction of type 1 diabetes. Curr. Diabetes Rep. 11, 533–542 (2011).

    Article  CAS  Google Scholar 

  9. Aly, T. A. et al. Genetic prediction of autoimmunity: initial oligogenic prediction of anti-islet autoimmunity amongst DR3/DR4-DQ8 relatives of patients with type 1A diabetes. J. Autoimmun. 25, 40–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Astill, T. P., Ellis, R. J., Arif, S., Tree, T. I. & Peakman, M. Promiscuous binding of proinsulin peptides to type 1 diabetes-permissive and -protective HLA class II molecules. Diabetologia 46, 496–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Todd, J. A., Bell, J. I. & McDevitt, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987). This study established that the amino acid sequence of the HLA-DQβ chain is linked to predisposition to T1D in a manner dependent on the identity of amino acid residue 57.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Gioia, L. et al. Position beta57 of I-A(g7) controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Sci. Immunol. 4, eaaw6329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robertson, C. C. et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat. Genet. 53, 962–971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garg, G. et al. Type 1 diabetes-associated IL2RA variation lowers IL-2 signaling and contributes to diminished CD4+CD25+ regulatory T cell function. J. Immunol. 188, 4644–4653 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Sabater, L. et al. Insulin alleles and autoimmune regulator (AIRE) gene expression both influence insulin expression in the thymus. J. Autoimmun. 25, 312–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Oakey, H. et al. Protocol for a nested case-control study design for omics investigations in the Environmental Determinants of Islet Autoimmunity cohort. Ann. Med. 55, 2198255 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ziegler, A. G. et al. Primary prevention of beta-cell autoimmunity and type 1 diabetes — the Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives. Mol. Metab. 5, 255–262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krischer, J. P. et al. Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age: the TEDDY study. Diabetes Care 40, 1194–1202 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rewers, M. et al. Newborn screening for HLA markers associated with IDDM: Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia 39, 807–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Bach, J. F. Autoimmune diseases as the loss of active “self-control”. Ann. N. Y. Acad. Sci. 998, 161–177 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Gepts, W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14, 619–633 (1965).

    Article  CAS  PubMed  Google Scholar 

  24. Krogvold, L. et al. Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64, 1682–1687 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Oikarinen, S. et al. Characterisation of enterovirus RNA detected in the pancreas and other specimens of live patients with newly diagnosed type 1 diabetes in the DiViD study. Diabetologia 64, 2491–2501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nekoua, M. P., Alidjinou, E. K. & Hober, D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 18, 503–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Calvo, T. Enterovirus infection and type 1 diabetes: unraveling the crime scene. Clin. Exp. Immunol. 195, 15–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Krogvold, L. et al. Pleconaril and ribavirin in new-onset type 1 diabetes: a phase 2 randomized trial. Nat. Med. 29, 2902–2908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamrath, C. et al. Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV Registry. Diabetes Care 45, 1762–1771 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. D’Souza, D. et al. Incidence of diabetes in children and adolescents during the COVID-19 pandemic: a systematic review and meta-analysis. JAMA Netw. Open 6, e2321281 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hippich, M. et al. A public health antibody screening indicates a 6-fold higher SARS-CoV-2 exposure rate than reported cases in children. Med 2, 149–163 e144 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Rewers, M. et al. SARS-CoV-2 infections and presymptomatic type 1 diabetes autoimmunity in children and adolescents from Colorado, USA, and Bavaria, Germany. JAMA 328, 1252–1255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Del Chierico, F. et al. Pathophysiology of type 1 diabetes and gut microbiota role. Int. J. Mol. Sci. 23, 14650 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morse, Z. J., Simister, R. L., Crowe, S. A., Horwitz, M. S. & Osborne, L. C. Virus induced dysbiosis promotes type 1 diabetes onset. Front. Immunol. 14, 1096323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gavin, P. G., Kim, K. W., Craig, M. E., Hill, M. M. & Hamilton-Williams, E. E. Multi-omic interactions in the gut of children at the onset of islet autoimmunity. Microbiome 10, 230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paun, A. et al. Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children. Sci. Immunol. 4, eaau8125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rouxel, O. et al. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol. 18, 1321–1331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nel, I. et al. MAIT cell alterations in adults with recent-onset and long-term type 1 diabetes. Diabetologia 64, 2306–2321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gulden, E. et al. Microbiota control immune regulation in humanized mice. JCI Insight 2, e91709 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sun, L. et al. Two to tango: dialogue between adaptive and innate immunity in type 1 diabetes. J. Diabetes Res. 2020, 4106518 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ferris, S. T. et al. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41, 657–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zirpel, H. & Roep, B. O. Islet-resident dendritic cells and macrophages in type 1 diabetes: in search of bigfoot’s print. Front. Endocrinol. 12, 666795 (2021).

    Article  Google Scholar 

  43. Citro, A., Campo, F., Dugnani, E. & Piemonti, L. Innate immunity mediated inflammation and beta cell function: neighbors or enemies? Front. Endocrinol. 11, 606332 (2020).

    Article  Google Scholar 

  44. Calderon, B. et al. The pancreas anatomy conditions the origin and properties of resident macrophages. J. Exp. Med. 212, 1497–1512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zakharov, P. N., Hu, H., Wan, X. & Unanue, E. R. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J. Exp. Med. 217, e20192362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carrero, J. A. et al. Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc. Natl Acad. Sci. USA 114, E10418–E10427 (2017). This paper demonstrates the essential role of islet-resident macrophages in the development of autoimmune diabetes in NOD mice.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Dror, E. et al. Postprandial macrophage-derived IL-1beta stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Alleva, D. G., Pavlovich, R. P., Grant, C., Kaser, S. B. & Beller, D. I. Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains: elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice. Diabetes 49, 1106–1115 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Calderon, B., Carrero, J. A., Miller, M. J. & Unanue, E. R. Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proc. Natl Acad. Sci. USA 108, 1567–1572 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Hu, H., Zakharov, P. N., Peterson, O. J. & Unanue, E. R. Cytocidal macrophages in symbiosis with CD4 and CD8 T cells cause acute diabetes following checkpoint blockade of PD-1 in NOD mice. Proc. Natl Acad. Sci. USA 117, 31319–31330 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Vecchio, F. et al. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 3, e122146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, J. et al. Distinct neutrophil counts and functions in newly diagnosed type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab. Res. Rev. 35, e3064 (2019).

    Article  PubMed  Google Scholar 

  53. Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2013). This study highlights the essential role of innate immune cells and their crosstalk in the initiation of autoimmune diabetes.

    Article  CAS  PubMed  Google Scholar 

  54. Diana, J. & Lehuen, A. Macrophages and beta-cells are responsible for CXCR2-mediated neutrophil infiltration of the pancreas during autoimmune diabetes. EMBO Mol. Med. 6, 1090–1104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Battaglia, M., Petrelli, A. & Vecchio, F. Neutrophils and type 1 diabetes: current knowledge and suggested future directions. Curr. Opin. Endocrinol. Diabetes Obes. 26, 201–206 (2019).

    Article  PubMed  Google Scholar 

  56. Valle, A. et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 62, 2072–2077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Boer, P. et al. Large-scale electron microscopy database for human type 1 diabetes. Nat. Commun. 11, 2475 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  58. Gardner, G. & Fraker, C. A. Natural killer cells as key mediators in type I diabetes immunopathology. Front. Immunol. 12, 722979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poirot, L., Benoist, C. & Mathis, D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl Acad. Sci. USA 101, 8102–8107 (2004).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Hussain, M. J. et al. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 39, 60–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Bradshaw, E. M. et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J. Immunol. 183, 4432–4439 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Apaolaza, P. S. et al. Islet expression of type I interferon response sensors is associated with immune infiltration and viral infection in type 1 diabetes. Sci. Adv. 7, eabd6527 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Li, Q. et al. Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105, 12439–12444 (2008). This study is one of the seminal papers demonstrating the role of IFNα as an initiator of T1D.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Rodrigues, K. B. et al. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia 63, 1576–1587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kallionpaa, H. et al. Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63, 2402–2414 (2014).

    Article  PubMed  Google Scholar 

  66. Ferreira, R. C. et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63, 2538–2550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lombardi, A., Tsomos, E., Hammerstad, S. S. & Tomer, Y. Interferon alpha: the key trigger of type 1 diabetes. J. Autoimmun. 94, 7–15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lundberg, M., Krogvold, L., Kuric, E., Dahl-Jorgensen, K. & Skog, O. Expression of interferon-stimulated genes in insulitic pancreatic islets of patients recently diagnosed with type 1 diabetes. Diabetes 65, 3104–3110 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Marroqui, L. et al. Interferon-alpha mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia 60, 656–667 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Lombardi, A. & Tomer, Y. Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress. J. Autoimmun. 80, 48–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coomans de Brachene, A. et al. IFN-alpha induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia 61, 636–640 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Chandra, V. et al. The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α. Nat. Commun. 13, 6363 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309, 2473–2479 (2013). This is a landmark study establishing the link between multiple islet autoantibody positivity and risk of progressing to stage 3 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krischer, J. P. et al. Predicting islet cell autoimmunity and type 1 diabetes: an 8-year TEDDY study progress report. Diabetes Care 41, 1051–1060 (2019).

    Article  Google Scholar 

  75. Kwon, B. C. et al. Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nat. Commun. 13, 1514 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Redondo, M. J. et al. A type 1 diabetes genetic risk score predicts progression of islet autoimmunity and development of type 1 diabetes in individuals at risk. Diabetes Care 41, 1887–1894 (2018). This representative study capitalizes on the ability to create polygenic risk scores for population screening efforts to identify at-risk subjects and those with distinct HLA genotypes or risk variants for pathway targeted therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Warncke, K. et al. Elevations in blood glucose before and after the appearance of islet autoantibodies in children. J. Clin. Invest. 132, e162123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wong, F. S. et al. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 53, 2581–2587 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Hu, C. Y. et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J. Clin. Invest. 117, 3857–3867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Silveira, P. A. et al. The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur. J. Immunol. 32, 3657–3666 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Hulbert, C., Riseili, B., Rojas, M. & Thomas, J. W. B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol. 167, 5535–5538 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Smith, M. J. et al. Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 64, 1703–1712 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Leete, P. et al. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 63, 1258–1267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Campbell-Thompson, M. L. et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56, 2541–2543 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768 e755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Campbell-Thompson, M. et al. Insulitis and beta-cell mass in the natural history of type 1. Diabetes 65, 719–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Babon, J. A. et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat. Med. 22, 1482–1487 (2016). This study identified several autoreactive T cells directly isolated from organ donors with T1D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Landry, L. G. et al. Proinsulin-reactive CD4 T cells in the islets of type 1 diabetes organ donors. Front. Endocrinol. 12, 622647 (2021).

    Article  Google Scholar 

  90. Pathiraja, V. et al. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 64, 172–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Yang, J. et al. Antigen-specific T cell analysis reveals that active immune responses to beta cell antigens are focused on a unique set of epitopes. J. Immunol. 199, 91–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Walker, L. S. & von Herrath, M. CD4 T cell differentiation in type 1 diabetes. Clin. Exp. Immunol. 183, 16–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Ferraro, A. et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 60, 2903–2913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arif, S. et al. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated beta-cell death. Diabetes 60, 2112–2119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kenefeck, R. et al. Follicular helper T cell signature in type 1 diabetes. J. Clin. Invest. 125, 292–303 (2015). This study demonstrated that TFH cells and IL-21 are overproduced in T1D, challenging the established TH1 paradigm.

    Article  PubMed  Google Scholar 

  97. Ferreira, R. C. et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia 58, 781–790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Viisanen, T. et al. Circulating CXCR5+PD-1+ICOS+ follicular T helper cells are increased close to the diagnosis of type 1 diabetes in children with multiple autoantibodies. Diabetes 66, 437–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Pinto, A. I., Smith, J., Kissack, M. R., Hogg, K. G. & Green, E. A. Thymic B cell-mediated attack of thymic stroma precedes type 1 diabetes development. Front. Immunol. 9, 1281 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ekman, I. et al. Circulating CXCR5PD-1hi peripheral T helper cells are associated with progression to type 1 diabetes. Diabetologia 62, 1681–1688 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Edner, N. M. et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol. 21, 1244–1255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kendall, P. L., Yu, G., Woodward, E. J. & Thomas, J. W. Tertiary lymphoid structures in the pancreas promote selection of B lymphocytes in autoimmune diabetes. J. Immunol. 178, 5643–5651 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Penaranda, C., Tang, Q., Ruddle, N. H. & Bluestone, J. A. Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs. Diabetes 59, 1461–1468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Korpos, E. et al. Identification and characterisation of tertiary lymphoid organs in human type 1 diabetes. Diabetologia 64, 1626–1641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mallone, R. et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 56, 613–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Cerosaletti, K. et al. Single-cell RNA sequencing reveals expanded clones of islet antigen-reactive CD4+ T cells in peripheral blood of subjects with type 1 diabetes. J. Immunol. 199, 323–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Anderson, A. M. et al. Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proc. Natl Acad. Sci. USA 118, e2107208118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Culina, S. et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci. Immunol. 3, eaao4013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bender, C., Rodriguez-Calvo, T., Amirian, N., Coppieters, K. T. & von Herrath, M. G. The healthy exocrine pancreas contains preproinsulin-specific CD8 T cells that attack islets in type 1 diabetes. Sci. Adv. 6, eabc5586 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  110. Skowera, A. et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 118, 3390–3402 (2008). In this study, preproinsulin-specific CTLs that were capable of killing β-cells were isolated and characterized from peripheral blood of patients. The presence of these cells with a direct mechanism for β-cell killing suggests a pathological mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012). This is a seminal paper showing direct HLA multimer staining of in situ autoreactive T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yeo, L. et al. Autoreactive T effector memory differentiation mirrors beta cell function in type 1 diabetes. J. Clin. Invest. 128, 3460–3474 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wiedeman, A. E. et al. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. J. Clin. Invest. 130, 480–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Abdelsamed, H. A. et al. Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes. Nat. Immunol. 21, 578–587 (2020). In this study, tetramer-sorted antigen specific CD8+ T cells from individualswith T1D were found to have an epigenetic signature suggesting stem cell memory features. Together with Bender et al. (2020), this observation suggests novel features of autoreactive CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gearty, S. V. et al. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature 602, 156–161 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  116. Skowera, A. et al. β-Cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 64, 916–925 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Tai, N. et al. Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. J. Exp. Med. 213, 2129–2146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hebbandi Nanjundappa, R. et al. A gut microbial mimic that hijacks diabetogenic autoreactivity to suppress colitis. Cell 171, 655–667.17 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Okada, M. et al. Islet-specific CD8+ T cells gain effector function in the gut lymphoid tissues via bystander activation not molecular mimicry. Immunol. Cell Biol. 101, 36–48 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Wan, X. et al. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature 560, 107–111 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  121. Quesada-Masachs, E. et al. Upregulation of HLA class II in pancreatic beta cells from organ donors with type 1 diabetes. Diabetologia 65, 387–401 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Bottazzo, G. F. et al. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N. Engl. J. Med. 313, 353–360 (1985).

    Article  CAS  PubMed  Google Scholar 

  123. Foulis, A. K., Farquharson, M. A. & Hardman, R. Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30, 333–343 (1987). Together with Bottazo et al. (1985), this study revealed that HLA molecules can be aberrantly expressed in the pancreatic islets of donors with T1D, raising the possibility that this contributes to immune-mediated destruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Marroqui, L. et al. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic beta-cells. Diabetes 64, 3808–3817 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Rui, J. et al. Tet2 controls the responses of beta cells to inflammation in autoimmune diabetes. Nat. Commun. 12, 5074 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  127. Shalev, A. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Mol. Endocrinol. 28, 1211–1220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Forlenza, G. P. et al. Effect of verapamil on pancreatic beta cell function in newly diagnosed pediatric type 1 diabetes: a randomized clinical trial. JAMA 329, 990–999 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xu, G. et al. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat. Commun. 13, 1159 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  130. Purcell, A. W., Sechi, S. & DiLorenzo, T. P. The evolving landscape of autoantigen discovery and characterization in type 1 diabetes. Diabetes 68, 879–886 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rodriguez-Calvo, T., Johnson, J. D., Overbergh, L. & Dunne, J. L. Neoepitopes in type 1 diabetes: etiological insights, biomarkers and therapeutic targets. Front. Immunol. 12, 667989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mannering, S. I. et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J. Exp. Med. 202, 1191–1197 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wiles, T. A. et al. Identification of hybrid insulin peptides (HIPs) in mouse and human islets by mass spectrometry. J. Proteome Res. 18, 814–825 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wiles, T. A., Saba, L. M. & Delong, T. Peptide-spectrum match validation with internal standards (p-vis): internally-controlled validation of mass spectrometry-based peptide identifications. J. Proteome Res. 20, 236–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Wiles, T. A. et al. Characterization of human CD4 T cells specific for a C-Peptide/C-peptide hybrid insulin peptide. Front. Immunol. 12, 668680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baker, R. L. et al. Hybrid insulin peptides are autoantigens in type 1 diabetes. Diabetes 68, 1830–1840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mitchell, A. M. et al. T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proc. Natl Acad. Sci. USA 118, e2019129118 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016). This study in diabetic mice and human pancreatic samples suggests a role for hybrid peptides in breaking immune tolerance.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Wiles, T. A. et al. An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J. Autoimmun. 78, 11–18 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  140. Parras, D., Sole, P., Delong, T., Santamaria, P. & Serra, P. Recognition of multiple hybrid insulin peptides by a single highly diabetogenic T-cell receptor. Front. Immunol. 12, 737428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Burton, A. R. et al. On the pathogenicity of autoantigen-specific T-cell receptors. Diabetes 57, 1321–1330 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Crawford, S. A. et al. Cathepsin D drives the formation of hybrid insulin peptides relevant to the pathogenesis of type 1 diabetes. Diabetes 71, 2793–2803 (2022). This study shows that HIPs, formed by peptide bond cross-linking between proinsulin fragments and other peptides in pancreatic β-cells, are identified in the CD4 T cell targets of indiviuals with T1D; cathepsin D is revealed as the key protease driving HIP formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Daniel, D., Gill, R. G., Schloot, N. & Wegmann, D. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol. 25, 1056–1062 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Strollo, R. et al. Autoantibody and T cell responses to oxidative post-translationally modified insulin neoantigenic peptides in type 1 diabetes. Diabetologia 66, 132–146 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Mallone, R., Brezar, V. & Boitard, C. T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin. Dev. Immunol. 2011, 513210 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Yang, M. L. et al. Carbonyl posttranslational modification associated with early-onset type 1 diabetes autoimmunity. Diabetes 71, 1979–1993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kracht, M. J. et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507 (2017). This study explores a new source of immunogenic polypeptides originating from a nonconventional open reading frame within human insulin mRNA, which can be targeted by cytotoxic CD8+ T cells present in individuals with T1D, potentially contributing to β-cell destruction in the disease.

    Article  CAS  PubMed  Google Scholar 

  148. Schneider, A. et al. The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. J. Immunol. 181, 7350–7355 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Hulme, M. A., Wasserfall, C. H., Atkinson, M. A. & Brusko, T. M. Central role for interleukin-2 in type 1 diabetes. Diabetes 61, 14–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Dean, J. W. et al. Innate inflammation drives NK cell activation to impair Treg activity. J. Autoimmun. 108, 102417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vecchione, A. et al. Reduced follicular regulatory T cells in spleen and pancreatic lymph nodes of patients with type 1 diabetes. Diabetes 70, 2892–2902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Battaglia, M. et al. Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care 43, 5–12 (2020). This study shows that demographic and immunological factors may be used to identify individuals with T1D in whom the mechanisms of disease and responses to therapies differ. Endotypes may be defined by these parameters.

    Article  PubMed  Google Scholar 

  154. Bluestone, J. A., Buckner, J. H. & Herold, K. C. Immunotherapy: building a bridge to a cure for type 1 diabetes. Science 373, 510–516 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  155. Dayan, C. M. et al. Preventing type 1 diabetes in childhood. Science 373, 506–510 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  156. Pearson, J. A., McKinney, E. F. & Walker, L. S. K. 100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. Immunother. Adv. 1, ltab024 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Mastrandrea, L. et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 32, 1244–1249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Quattrin, T. et al. Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N. Engl. J. Med. 383, 2007–2017 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Moran, A. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381, 1905–1915 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Greenbaum, C. J. et al. IL-6 receptor blockade does not slow beta cell loss in new-onset type 1 diabetes. JCI Insight 6, e150074 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Piemonti, L. et al. Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1 and CXCR2, in new-onset type 1 diabetes: a multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 24, 1840–1849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Citro, A. et al. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes 64, 1329–1340 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Gitelman, S. E. et al. Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 9, 502–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Waibel, M. et al. Baricitinib and beta-cell function in patients with new-onset type 1 diabetes. N. Engl. J. Med. 389, 2140–2150 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Ludvigsson, J. et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N. Engl. J. Med. 359, 1909–1920 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Ludvigsson, J. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 366, 433–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Wherrett, D. K. et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378, 319–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nowak, C. et al. Intralymphatic GAD-alum (Diamyd®) improves glycemic control in type 1 diabetes with HLA DR3-DQ2. J. Clin. Endocrinol. Metab. 107, 2644–2651 (2022). 

    Article  PubMed  PubMed Central  Google Scholar 

  169. Diabetes Prevention Trial — Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

    Article  Google Scholar 

  170. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial — Type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group. et al. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA 318, 1891–1902 (2017).

    Article  Google Scholar 

  172. Bonifacio, E. et al. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA 313, 1541–1549 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009). This study highlights a role for B cells in the pathogenesis in T1D and demonstrates that treatment with rituximab can preserve β-cell function in individuals with T1D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pescovitz, M. D. et al. B-lymphocyte depletion with rituximab and beta-cell function: two-year results. Diabetes Care 37, 453–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chamberlain, N. et al. Rituximab does not reset defective early B cell tolerance checkpoints. J. Clin. Invest. 126, 282–287 (2016).

    Article  PubMed  Google Scholar 

  176. Linsley, P. S. et al. Elevated T cell levels in peripheral blood predict poor clinical response following rituximab treatment in new-onset type 1 diabetes. Genes Immun. 20, 293–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Lenschow, D. J. et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med. 181, 1145–1155 (1995).

    Article  CAS  PubMed  Google Scholar 

  178. Orban, T. et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care 37, 1069–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011). This randomized placebo-controlled clinical trial shows that treatment with CTLA4Ig over 2 years attenuated loss of β-cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Russell, W. E. et al. Abatacept for delay of type 1 diabetes progression in stage 1 relatives at risk: a randomized, double-masked, controlled trial. Diabetes Care 46, 1005–1013 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Orban, T. et al. Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline. Diabetes 63, 3449–3457 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, C. J. et al. Costimulation blockade in combination with IL-2 permits regulatory T cell sparing immunomodulation that inhibits autoimmunity. Nat. Commun. 13, 6757 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  183. Haller, M. J. et al. Anti-thymocyte globulin/G-CSF treatment preserves beta cell function in patients with established type 1 diabetes. J. Clin. Invest. 125, 448–455 (2015).

    Article  PubMed  Google Scholar 

  184. Haller, M. J. et al. Antithymocyte globulin plus G-CSF combination therapy leads to sustained immunomodulatory and metabolic effects in a subset of responders with established type 1 diabetes. Diabetes 65, 3765–3775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Haller, M. J. et al. Low-dose anti-thymocyte globulin preserves C-peptide, reduces HbA1c, and increases regulatory to conventional T-cell ratios in new-onset type 1 diabetes: two-year clinical trial data. Diabetes 68, 1267–1276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Haller, M. J. et al. Low-dose anti-thymocyte globulin (ATG) preserves beta-cell function and improves HbA1c in new-onset type 1 diabetes. Diabetes Care 41, 1917–1925 (2018). This randomized placebo-controlled clinical trial shows that ATG treatment reduced the decline in β-cell function in patients with new-onset T1D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jacobsen, L. M. et al. Responders to low-dose ATG induce CD4 T cell exhaustion in type 1 diabetes. JCI Insight 8, e161812 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Rigby, M. R. et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J. Clin. Invest. 125, 3285–3296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Charpentier, B. et al. Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation 54, 997–1002 (1992).

    Article  CAS  PubMed  Google Scholar 

  190. Chatenoud, L. OKT3-induced cytokine-release syndrome: prevention effect of anti-tumor necrosis factor monoclonal antibody. Transplant. Proc. 25, 47–51 (1993).

    CAS  PubMed  Google Scholar 

  191. Norman, D. J., Chatenoud, L., Cohen, D., Goldman, M. & Shield, C. F. III Consensus statement regarding OKT3-induced cytokine-release syndrome and human antimouse antibodies. Transplant. Proc. 25, 89–92 (1993).

    CAS  PubMed  Google Scholar 

  192. Herold, K. C. et al. Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody. Diabetes 41, 385–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  193. Chatenoud, L., Primo, J. & Bach, J. F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994). This study shows, in the NOD model, how brief treatment with monolonal CD3 antibody could reverse spontaneous diabetes, after its appearance, and induce specific immune tolerance.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  195. Sherry, N. A. et al. Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55, 3238–3245 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Bach, J. F. Anti-CD3 antibodies for type 1 diabetes: beyond expectations. Lancet 378, 459–460 (2011).

    Article  PubMed  Google Scholar 

  197. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002). This clinical trial of teplizumab in patients with new-onset T1D shows that a single 14-day course would attenuate the loss of β-cell function.

    Article  CAS  PubMed  Google Scholar 

  198. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Herold, K. C. et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62, 3766–3774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Herold, K. C. et al. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. Diabetologia 56, 391–400 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Herold, K. C. et al. Teplizumab: a disease-modifying therapy for type 1 diabetes that preserves beta-cell function. Diabetes Care 46, 1848–1856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ramos, E. L. et al. Teplizumab and beta-cell function in newly diagnosed type 1 diabetes. N. Engl. J. Med. 389, 2151–2161 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019). This randomized placebo-controlled clinical trial shows that a single 14-day course of the CD3 antibody teplizumab would delay the onset of T1D in relatives at high risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sosenko, J. M. et al. Phenotypes associated with zones defined by area under the curve glucose and C-peptide in a population with islet autoantibodies. Diabetes Care 46, 1098–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  207. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Seelig, E. et al. The DILfrequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight 3, e99306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Zhang, J. Y. et al. Low-dose IL-2 reduces IL-21+ T cell frequency and induces anti-inflammatory gene expression in type 1 diabetes. Nat. Commun. 13, 7324 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  210. Rosenzwajg, M. et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63, 1808–1821 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Putnam, A. L. et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58, 652–662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015). This phase Ib clinical study evaluates the safety, pharmacodynamics and limited information on the efficacy of autologous Treg cells that were expanded ex vivo and administered to indivduals with recent-onset T1D.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cui, C., Craft, J. & Joshi, N. S. T follicular helper cells in cancer, tertiary lymphoid structures, and beyond. Semin. Immunol. 69, 101797 (2023).

    Article  CAS  PubMed  Google Scholar 

  216. Linsley, P. S., Greenbaum, C. J., Speake, C., Long, S. A. & Dufort, M. J. B lymphocyte alterations accompany abatacept resistance in new-onset type 1 diabetes. JCI Insight 4, e126136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Thomas, H. E. et al. Interferon signalling in pancreatic beta cells. Front. Biosci. 14, 644–656 (2009).

    Article  CAS  Google Scholar 

  218. Mayr, A. et al. GAD autoantibody affinity and epitope specificity identify distinct immunization profiles in children at risk for type 1 diabetes. Diabetes 56, 1527–1533 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Endesfelder, D. et al. Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children. Diabetes 68, 119–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Achenbach, P. et al. Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 53, 384–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Achenbach, P. et al. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J. Clin. Invest. 114, 589–597 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Schlosser, M. et al. In insulin-autoantibody-positive children from the general population, antibody affinity identifies those at high and low risk. Diabetologia 48, 1830–1832 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Yang, M. L. et al. Citrullination of glucokinase is linked to autoimmune diabetes. Nat. Commun. 13, 1870 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  224. Schloot, N. C. et al. Comparison of cytokine ELISpot assay formats for the detection of islet antigen autoreactive T cells. Report of the Third Immunology of Diabetes Society T-cell Workshop. J. Autoimmun. 21, 365–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  225. Herold, K. C. et al. Validity and reproducibility of measurement of islet autoreactivity by T-cell assays in subjects with early type 1 diabetes. Diabetes 58, 2588–2595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. James, E. A. et al. Combinatorial detection of autoreactive CD8+ T cells with HLA-A2 multimers: a multi-centre study by the Immunology of Diabetes Society T Cell Workshop. Diabetologia 61, 658–670 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Ogura, H. et al. Identification and analysis of islet antigen-specific CD8+ T cells with T cell libraries. J. Immunol. 201, 1662–1670 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Herold, K. C. et al. Increased T cell proliferative responses to islet antigens identify clinical responders to anti-CD20 monoclonal antibody (rituximab) therapy in type 1 diabetes. J. Immunol. 187, 1998–2005 (2011).

    Article  CAS  PubMed  Google Scholar 

  229. Brown, C. T. et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 6, e25792 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  230. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Martinov, T. et al. Programmed death-1 restrains the germinal center in type 1 diabetes. J. Immunol. 203, 844–852 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Serr, I. et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc. Natl Acad. Sci. USA 113, E6659–E6668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Smith, J. A., Tso, J. Y., Clark, M. R., Cole, M. S. & Bluestone, J. A. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J. Exp. Med. 185, 1413–1422 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Waldron-Lynch, F. et al. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients. Sci. Transl. Med. 4, 118ra112 (2012).

    Article  Google Scholar 

  236. Penaranda, C., Tang, Q. & Bluestone, J. A. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J. Immunol. 187, 2015–2022 (2011).

    Article  CAS  PubMed  Google Scholar 

  237. Belghith, M. et al. TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med. 9, 1202–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  238. Long, S. A. et al. Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci. Immunol. 1, eaai7793 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Perdigoto, A. L. et al. Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia 62, 655–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Campbell-Thompson, M. et al. Network for Pancreatic Ogan Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab. Res. Rev. 28, 608–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.C.H. acknowledges support from the US National Institutes of Health (NIH) through grant numbers DK057846, DK129523, DK045735, AI66387, DK106993 (Type 1 Diabetes TrialNet) and CA2277473. A.L.P. also acknowledges support from NIH through grant numbers DK106993 (Type 1 Diabetes TrialNet) and CA215110. T.M.B. acknowledges support from the National Institutes of Allergy and Infectious Diseases (NIAID) through grant number P01AI042288 and National Institute of Diabetes Digestive and Kidney Diseases through grant numbers DK106191 and DK122638. L.S.K.W. acknowledges support from the Medical Research Council (MR/N001435/1), Wellcome Trust (220772/Z/20/Z), Diabetes UK (20/0006172) and Connect Immune Research (22931). We are grateful to Natalie Edner for the assistance with figure preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote and edited the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Kevan C. Herold or Lucy S. K. Walker.

Ethics declarations

Competing interests

K.C.H. is a co-inventor on a patent for the use of teplizumab to delay type 1 diabetes and has consulted for Sanofi, Provention Bio, GSK, Abata, Gentibio and Idorsia. He is on the scientific advisory board for Sonoma and NexImmune.

Peer review

Peer review information

Nature Reviews Immunology thanks Agnes Lehuen, Matthias von Herrath and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herold, K.C., Delong, T., Perdigoto, A.L. et al. The immunology of type 1 diabetes. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-023-00985-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-023-00985-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing