Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential oncogenic potential of activated RAS isoforms in melanocytes

Abstract

RAS genes are mutated in approximately 30% of all human cancers. Interestingly, there exists a strong bias in favor of mutation of only one of the three major RAS genes in tumors of different cellular origins. NRAS mutations occur in approximately 20% of human melanomas, whereas HRAS and KRAS mutations are rare in this disease. To define the mechanism(s) responsible for this preference in melanocytes, we compared the transformation efficiencies of mutant NRAS and KRAS in immortal, non-transformed Ink4a/Arf-deficient melanocytes. NRAS mutation leads to increased cellular proliferation and is potently tumorigenic. In contrast, KRAS mutation does not enhance melanocyte proliferation and is only weakly tumorigenic on its own. Although both NRAS and KRAS activate mitogen-activated protein kinase signaling, only NRAS enhances MYC activity in these cells. Our data suggest that the activity of specific RAS isoforms is context-dependent and provide a possible explanation for the prevalence of NRAS mutations in melanoma. In addition, understanding this mechanism will have important implications for cancer therapies targeting RAS pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F . (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 65: 4005–4011.

    Article  CAS  Google Scholar 

  • Aroca P, Urabe K, Kobayashi T, Tsukamoto K, Hearing VJ . (1993). Melanin biosynthesis patterns following hormonal stimulation. J Biol Chem 268: 25650–25655.

    CAS  PubMed  Google Scholar 

  • Bennett DC, Cooper PJ, Hart IR . (1987). A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 39: 414–418.

    Article  CAS  Google Scholar 

  • Castellano M, Parmiani G . (1999). Genes involved in melanoma: an overview of INK4a and other loci. Melanoma Res 9: 421–432.

    Article  CAS  Google Scholar 

  • Chin L, Garraway LA, Fisher DE . (2006). Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20: 2149–2182.

    Article  CAS  Google Scholar 

  • Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11: 2822–2834.

    Article  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Edgar R, Domrachev M, Lash AE . (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.

    Article  CAS  Google Scholar 

  • Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernandez-Medarde A, Swaminathan N, Yienger K et al. (2001). Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21: 1444–1452.

    Article  CAS  Google Scholar 

  • Giehl K . (2005). Oncogenic Ras in tumour progression and metastasis. Biol Chem 386: 193–205.

    CAS  PubMed  Google Scholar 

  • Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG . (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol 126: 154–160.

    Article  CAS  Google Scholar 

  • Gregory MA, Qi Y, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278: 51606–51612.

    Article  CAS  Google Scholar 

  • Henriksson M, Bakardjiev A, Klein G, Luscher B . (1993). Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 8: 3199–3209.

    CAS  PubMed  Google Scholar 

  • Holmen SL, Williams BO . (2005). Essential role for Ras signaling in glioblastoma maintenance. Cancer Res 65: 8250–8255.

    Article  CAS  Google Scholar 

  • Kamemura K, Hayes BK, Comer FI, Hart GW . (2002). Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem 277: 19229–19235.

    Article  CAS  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  CAS  Google Scholar 

  • Kim K, Lindstrom MJ, Gould MN . (2002). Regions of H- and K-ras that provide organ specificity/potency in mammary cancer induction. Cancer Res 62: 1241–1245.

    CAS  PubMed  Google Scholar 

  • Klein PS, Melton DA . (1996). A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93: 8455–8459.

    Article  CAS  Google Scholar 

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al. (1997). K-ras is essential for the development of the mouse embryo. Oncogene 15: 1151–1159.

    Article  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA . (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Article  CAS  Google Scholar 

  • Maher J, Baker DA, Manning M, Dibb NJ, Roberts IA . (1995). Evidence for cell-specific differences in transformation by N-, H- and K-ras. Oncogene 11: 1639–1647.

    CAS  PubMed  Google Scholar 

  • Prior IA, Hancock JF . (2001). Compartmentalization of Ras proteins. J Cell Sci 114: 1603–1608.

    CAS  PubMed  Google Scholar 

  • Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L et al. (2000). A gene expression database for the molecular pharmacology of cancer. Nat Genet 24: 236–244.

    Article  CAS  Google Scholar 

  • Sears RC . (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3: 1133–1137.

    Article  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  CAS  Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P . (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 465–475.

    Article  CAS  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    Article  CAS  Google Scholar 

  • Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlow SJ, Easty DJ et al. (2002). p16(Ink4a) in melanocyte senescence and differentiation. J Natl Cancer Inst 94: 446–454.

    Article  CAS  Google Scholar 

  • Umanoff H, Edelmann W, Pellicer A, Kucherlapati R . (1995). The murine N-ras gene is not essential for growth and development. Proc Natl Acad Sci USA 92: 1709–1713.

    Article  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. (1988). Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–532.

    Article  CAS  Google Scholar 

  • Yan J, Roy S, Apolloni A, Lane A, Hancock JF . (1998). Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 273: 24052–24056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Vincent Hearing for providing the anti-PEP7 antibody, Dr Stephen Hughes for the RCASBP(M2C)797-8 virus and Dr Brian Lewis for the RCASBP(A)MYC virus. We thank Bryn Eagleson, Elissa Boguslawski, Dawna Dylewski and the vivarium staff for assistance with the animal experiments. We thank Dr Kyle Furge and Karl Dykema (Laboratory of Computational Biology) for technical assistance and helpful comments. We also thank David Nadziejka for critical review of the manuscript. This work was supported by funds from the Melanoma Research Foundation, the James A Schlipmann Melanoma Cancer Foundation and the Van Andel Research Institute. Lastly, the authors wish to dedicate this work to the memory of Dr Han-Mo Koo, who made significant contributions to the scientific community and especially to cancer research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Holmen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitwam, T., VanBrocklin, M., Russo, M. et al. Differential oncogenic potential of activated RAS isoforms in melanocytes. Oncogene 26, 4563–4570 (2007). https://doi.org/10.1038/sj.onc.1210239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210239

Keywords

This article is cited by

Search

Quick links