Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer

Abstract

The Kelch-like ECH-associated protein 1 (KEAP1)–nuclear factor E2-related factor 2 (NRF2)pathway has a central role in cellular antioxidant defense. NRF2 activation due to KEAP1 or NRF2 mutations occurs frequently in many cancers, suggesting that NRF2 inhibition could be a promising therapeutic strategy. However, no potent NRF2 inhibitors are clinically available to date. To develop potent NRF2 inhibitors for therapeutic purpose, we screened ~4000 clinical compounds and determined clobetasol propionate (CP) as the most potent NRF2 inhibitor. Mechanistically, CP prevented nuclear accumulation and promoted β-TrCP-dependent degradation of NRF2 in a glucocorticoid receptor- and a glycogen synthase kinase 3 (GSK3)-dependent manner. As a result, CP induced oxidative stress and strongly suppressed the anchorage-independent growth of tumors with KEAP1 mutation, but not with the wild-type KEAP1. Further, CP alone or in combination with rapamycin strongly inhibited the in vitro and in vivo growth of tumors harboring mutations in KEAP1 or both KEAP1 and LKB1 that are frequently observed in lung cancer. Thus, CP could be a repurposed therapeutic agent for cancers with high NRF2 activity. We also proposed that the use CP and rapamycin in combination could be a potential therapeutic strategy for tumors harboring both KEAP1 and LKB1 mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Suzuki T, Yamamoto M . Molecular basis of the Keap1–Nrf2 system. Free Radic Biol Med 2015; 88 (Part B): 93–100.

    Article  CAS  PubMed  Google Scholar 

  2. Gorrini C, Harris IS, Mak TW . Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931–947.

    Article  CAS  PubMed  Google Scholar 

  3. Ramos-Gomez M, Dolan PM, Itoh K, Yamamoto M, Kensler TW . Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene–DNA adducts and tumor yield in mice. Carcinogenesis 2003; 24: 461–467.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma S, Gao P, Steele VE . The chemopreventive efficacy of inhaled oltipraz particulates in the B[a]P-induced A/J mouse lung adenoma model. Carcinogenesis 2006; 27: 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  5. Lu M-C, Ji J-A, Jiang Z-Y, You Q-D . The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev 2016; 36: 924–963.

    Article  CAS  PubMed  Google Scholar 

  6. Sporn MB, Liby KT . NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012; 12: 564–571.

    Article  CAS  PubMed  Google Scholar 

  7. Menegon S, Columbano A, Giordano S . The dual roles of NRF2 in cancer. Trends Mol Med 2016; 22: 578–593.

    Article  CAS  PubMed  Google Scholar 

  8. Jaramillo MC, Zhang DD . The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev 2013; 27: 2179–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leinonen Hanna M, Kansanen E, Pölönen P, Heinäniemi M, Levonen A-L . Dysregulation of the Keap1–Nrf2 pathway in cancer. Biochem Soc Trans 2015; 43: 645–649.

    Article  CAS  PubMed  Google Scholar 

  10. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543–550.

    Article  Google Scholar 

  11. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    Article  Google Scholar 

  12. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011; 193: 275–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Umemura A, He F, Taniguchi K, Nakagawa H, Yamachika S, Font-Burgada J et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 2016; 29: 935–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo Y, Yu S, Zhang C, Kong A-NT . Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med 2015; 88 (Part B): 337–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tao S, Wang S, Moghaddam SJ, Ooi A, Chapman E, Wong PK et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res 2014; 74: 7430–7441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA 2011; 108: 1433–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2. Free Radic Biol Med 2015; 78: 202–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang X, Wang H, Fan L, Wu X, Xin A, Ren H et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med 2011; 50: 1599–1609.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y-C, Gan F-F, Shelar SB, Ng K-Y, Chew E-H . Antioxidant and Nrf2 inducing activities of luteolin, a flavonoid constituent in Ixeris sonchifolia Hance, provide neuroprotective effects against ischemia-induced cellular injury. Food Chem Toxicol 2013; 59: 272–280.

    Article  CAS  PubMed  Google Scholar 

  21. Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2013; 32: 4825–4835.

    Article  CAS  PubMed  Google Scholar 

  22. Wang XJ, Hayes JD, Henderson CJ, Wolf CR . Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci USA 2007; 104: 19589–19594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan KP, Kosuge K, Yang M, Ito S . NRF2 as a determinant of cellular resistance in retinoic acid cytotoxicity. Free Radic Biol Med 2008; 45: 1663–1673.

    Article  CAS  PubMed  Google Scholar 

  24. Kaufman JM, Amann JM, Park K, Arasada RR, Li H, Shyr Y et al. LKB1 loss induces characteristic patterns of gene expression in human tumors associated with NRF2 activation and attenuation of PI3K-AKT. J Thorac Oncol 2014; 9: 794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015; 5: 860–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kadmiel M, Cidlowski JA . Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 2013; 34: 518–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cuadrado A . Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic Biol Med 2015; 88 (Part B): 147–157.

    Article  CAS  PubMed  Google Scholar 

  28. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD . Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013; 32: 3765–3781.

    Article  CAS  PubMed  Google Scholar 

  29. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A . SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 2011; 31: 1121–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A . Glycogen synthase kinase-3β inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 2006; 281: 14841–14851.

    Article  CAS  PubMed  Google Scholar 

  31. Ference JD, Last AR . Choosing topical corticosteroids. Am Fam Physician 2009; 79: 135–140.

    PubMed  Google Scholar 

  32. Jacob SE, Steele T . Corticosteroid classes: a quick reference guide including patch test substances and cross-reactivity. J Am Acad Dermatol 2006; 54: 723–727.

    Article  PubMed  Google Scholar 

  33. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO et al. Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer. PLoS Med 2006; 3: e420.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hast BE, Cloer EW, Goldfarb D, Li H, Siesser PF, Yan F et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res 2014; 74: 808–817.

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Cespedes M . A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007; 26: 7825–7832.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong D, Guo L, de Aguirre I, Liu X, Lamb N, Sun S-Y et al. <em>LKB1</em> mutation in large cell carcinoma of the lung. Lung Cancer 53: 285–294.

  37. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  38. Shaw RJ . LKB1 and AMPK control of mTOR signalling and growth. Acta Physiol (Oxford, England) 2009; 196: 65–80.

    Article  CAS  Google Scholar 

  39. Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci USA 2014; 111: 2554–2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao Y, Xiao Q, Ma H, Li L, Liu J, Feng Y et al. LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci USA 2010; 107: 18892–18897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scagliotti GV, Selvaggi G . Antimetabolites and cancer: emerging data with a focus on antifolates. Expert Opin Ther Pat 2006; 16: 189–200.

    Article  CAS  PubMed  Google Scholar 

  42. Slingerland M, Cerella C, Guchelaar HJ, Diederich M, Gelderblom H . Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest New Drugs 2013; 31: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  43. Kim N, Yim HY, He N, Lee C-J, Kim JH, Choi J-S et al. Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Sci Rep 2016; 6: 29721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calderon-Montano JM, Burgos-Moron E, Orta ML, Maldonado-Navas D, Garcia-Dominguez I, Lopez-Lazaro M . Evaluating the cancer therapeutic potential of cardiac glycosides. Biomed Res Int 2014; 2014: 794930.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Calderon-Montano JM, Burgos-Moron E, Lopez-Lazaro M . The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact. Oncogene 2014; 33: 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  46. Moghadam-Kia S, Werth VP . Prevention and treatment of systemic glucocorticoid side effects. Int J Dermatol 2010; 49: 239–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin K-T, Wang L-H . New dimension of glucocorticoids in cancer treatment. Steroids 2016; 111: 84–88.

    Article  CAS  PubMed  Google Scholar 

  48. Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV . Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol Endocrinol 2010; 24: 1136–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM . Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152: 28–41.

    Article  CAS  PubMed  Google Scholar 

  50. Ki SH, Cho IJ, Choi DW, Kim SG . Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPβ TAD and Nrf2 Neh4/5: role of SMRT recruited to GR in GSTA2 gene repression. Mol Cell Biol 2005; 25: 4150–4165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kratschmar DV, Calabrese D, Walsh J, Lister A, Birk J, Appenzeller-Herzog C et al. Suppression of the Nrf2-dependent antioxidant response by glucocorticoids and 11β-HSD1-mediated glucocorticoid activation in hepatic cells. PLoS ONE 2012; 7: e36774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeon SM, Chandel NS, Hay N . AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485: 661–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR . DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 2009; 324: 407–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gluschnaider U, Hidas G, Cojocaru G, Yutkin V, Ben-Neriah Y, Pikarsky E . β-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor. PLoS ONE 2010; 5: e9060.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang G, Gong Y, Burczynski FJ, Hasinoff BB . Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay. Free Radic Res 2008; 42: 435–441.

    Article  CAS  PubMed  Google Scholar 

  56. Vichai V, Kirtikara K . Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006; 1: 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  57. van Meerloo J, Kaspers GJ, Cloos J . Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011; 731: 237–245.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y-GL and S-HP for the technical assistance provided. The clinical compound library (with 1887 compounds) was provided by the Korea Chemical Bank (KCB) from the Korea Research Institute of Chemical Technology (KRICT). This work was supported by grants from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (S2014-A0251-00001) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (S2014-A0403-00067) to S-MJ and the National Cancer Center of Korea (NCC1410670) to S-YK.

Author contributions

S-MJ designed the experiments. E-JC, B-JJ, H-SY and E-AS performed the in vitro experiments. S-YK and S-HL designed and performed the xenograft experiment. H-JK, SJ and S-MJ analyzed the data and S-MJ wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-M Jeon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, EJ., Jung, BJ., Lee, SH. et al. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene 36, 5285–5295 (2017). https://doi.org/10.1038/onc.2017.153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.153

This article is cited by

Search

Quick links