Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems

Abstract

Two-dimensional artificial spin-ice systems constructed from arrays of dipolar coupled monodomain magnets offer an experimental route to study the physics of frustration and a corresponding degeneracy that grows exponentially with system size. However, so far, such systems remain mainly frozen below their magnet’s Curie temperature, unable to explore their potential-energy landscape through thermal fluctuations. Here we demonstrate the creation of thermally active finite artificial spin-ice systems and the observation of magnetic fluctuations in real time and space. We show that the subsequent magnetization dynamics can be entirely understood from the underlying dipolar energy landscape, and demonstrate that both the energy scale and the complexity of the landscape affect the temporal and spatial nature of the observed configurational changes. This work paves the way for the in situ study of thermally induced magnetic relaxation processes and delivers a controlled route to the lowest-energy state in extended two-dimensional artificial spin-ice systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Finite artificial kagome spin-ice systems and real-time measurement of their dynamic magnetic structure using PEEM.
Figure 2: Hyper-cubic energy landscapes of finite artificial kagome spin-ice systems.
Figure 3: Temporally resolved dynamics of the magnetic degrees of freedom.
Figure 4: Single-ring residence times and instantaneous nearest-neighbour magnetic correlation at 420 K.

Similar content being viewed by others

References

  1. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  ADS  Google Scholar 

  2. Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nature Phys. 7, 75–79 (2011).

    ADS  Google Scholar 

  3. Moller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80, 140409 (2009).

    Article  ADS  Google Scholar 

  4. Chern, G. W., Mellado, P. & Tchernyshyov, O. Two-stage ordering of spins in dipolar spin ice on the kagome lattice. Phys. Rev. Lett. 106, 207202 (2011).

    Article  ADS  Google Scholar 

  5. Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nature Phys. 6, 359–363 (2010).

    Article  ADS  Google Scholar 

  6. Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nature Phys. 7, 68–74 (2011).

    Article  ADS  Google Scholar 

  7. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  ADS  Google Scholar 

  8. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).

    Article  ADS  Google Scholar 

  9. Snyder, J., Slusky, J. S., Cava, R. J. & Schiffer, P. How ‘spin ice’ freezes. Nature 413, 48–51 (2001).

    Article  ADS  Google Scholar 

  10. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  Google Scholar 

  11. Mengotti, E. et al. Building blocks of an artificial kagome spin ice: Photoemission electron microscopy of arrays of ferromagnetic islands. Phys. Rev. B 78, 144402 (2008).

    Article  ADS  Google Scholar 

  12. Daunheimer, S. A., Petrova, O., Tchernyshyov, O. & Cumings, J. Reducing disorder in artificial kagome ice. Phys. Rev. Lett. 107, 167201 (2011).

    Article  ADS  Google Scholar 

  13. Tabata, Y. et al. Kagome ice state in the dipolar spin ice Dy2Ti2O7 . Phys. Rev. Lett. 97, 257205 (2006).

    Article  ADS  Google Scholar 

  14. Fennell, T., Bramwell, S. T., McMorrow, D. F., Manuel, P. & Wildes, A. R. Pinch points and Kasteleyn transitions in kagome ice. Nature Phys. 3, 566–572 (2007).

    Article  ADS  Google Scholar 

  15. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  ADS  Google Scholar 

  16. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  ADS  Google Scholar 

  17. Ferreiro, D. U., Hegler, J. A., Komives, E. A. & Wolynes, P. G. On the role of frustration in the energy landscapes of allosteric proteins. Proc. Natl Acad. Sci. USA 108, 3499–3503 (2011).

    Article  ADS  Google Scholar 

  18. Giauque, W. F. & Wiebe, R. The entropy of hydrogen chloride heat capacity from 16°K to boiling point. Heat of vapourization. Vapor pressures of solid and liquid. J. Am. Chem. Soc. 50, 101–122 (1928).

    Article  Google Scholar 

  19. Ke, X. et al. Energy minimization and a.c. demagnetization in a nanomagnet array. Phys. Rev. Lett. 101, 037205 (2008).

    Article  ADS  Google Scholar 

  20. Budrikis, Z., Politi, P. & Stamps, R. L. Diversity enabling equilibration: Disorder and the ground state in artificial spin ice. Phys. Rev. Lett. 107, 217204 (2011).

    Article  ADS  Google Scholar 

  21. Kapaklis, V. et al. Melting artificial spin ice. New J. Phys. 14, 035009 (2012).

    Article  ADS  Google Scholar 

  22. Arnalds, U. B. et al. Thermalized ground state of artificial kagome spin ice building blocks. Appl. Phys. Lett. 101, 112404 (2012).

    Article  ADS  Google Scholar 

  23. Le Guyader, L. et al. Studying nanomagnets and magnetic heterostructures with X-ray PEEM at the Swiss Light Source. J. Electron. Spectrosc. Relat. Phenom. 185, 371–380 (2012).

    Article  Google Scholar 

  24. Stohr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993).

    Article  ADS  Google Scholar 

  25. Young, W. M. & Elcock, E. W. Monte Carlo studies of vacancy migration in binary ordered alloys: I. Phys. Soc. Lond. 89, 735–746 (1966).

    Article  ADS  Google Scholar 

  26. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    Article  ADS  Google Scholar 

  27. Braun, H. B. Thermally activated magnetization reversal in elongated ferromagnetic particles. Phys. Rev. Lett. 71, 3557–3560 (1993).

    Article  ADS  Google Scholar 

  28. Wernsdorfer, W. et al. Experimental evidence of the Neel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791–1794 (1997).

    Article  ADS  Google Scholar 

  29. Krause, S. et al. Magnetization reversal of nanoscale islands: How size and shape affect the Arrhenius prefactor. Phys. Rev. Lett. 103, 127202 (2009).

    Article  ADS  Google Scholar 

  30. Joseph, R. I. & Schlömann, E. J. Demagnetizing field in nonellipsoidal bodies. Appl. Phys. 36, 1579–1593 (1965).

    Article  Google Scholar 

  31. Qi, Y., Brintlinger, T. & Cumings, J. Direct observation of the ice rule in an artificial kagome spin ice. Phys. Rev. B 77, 094418 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Weber, V. Guzenko, E. Deckardt and M. Bednarzik for their help. This work was supported by the Swiss National Foundation and the Swiss Nanoscience Institute, University of Basel, and part of this work was carried out at the SIM beamline of the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

Sample preparation: A.F.; measurements: A.F., A.B., M.W., L.A; analysis and interpretation: A.F., P.M.D., A.K., L.J.H., R.V.C.; theory and simulations: P.M.D.; preparation of the manuscript: A.F., P.M.D., A.K., L.J.H.; supervision of the project: L.J.H., F.N. All authors contributed to the manuscript.

Corresponding authors

Correspondence to P. M. Derlet or L. J. Heyderman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 208 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 576 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 365 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhan, A., Derlet, P., Kleibert, A. et al. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nature Phys 9, 375–382 (2013). https://doi.org/10.1038/nphys2613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing