Skip to main content
Log in

Magnetisation reversal in two-dimensional ensemble of nanoparticles with positional defects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the relaxation behaviour in the two-dimensional assembly of magnetic nanoparticles (MNPs) with aligned anisotropy axes and positional defects. The orientation of the anisotropy axes and the strength of disorder are changed by varying \(\alpha \) and \(\Delta \), respectively. The magnetisation decay does not depend on the aspect ratio \(A_r\) of the system and \(\Delta \) for small dipolar interaction strength \(h_d=0.2\). Remarkably, the magnetisation decays rapidly for considerable \(h_d\) with negligible \(\Delta \) and \(A_r=1.0\) because the dipolar interaction of enough strength promotes antiferromagnetic coupling in square ensembles of MNPs. On the other hand, there is a prolonged magnetisation decay for large \(\Delta \) because of the enhancement in ferromagnetic coupling by the positional disorder. Notably, magnetisation relaxes slowly for \(\alpha <\alpha ^\star \) even with moderate \(h_d\) and significant \(A_r\). Interestingly, the slowing down of the magnetic relaxation shifts to a lower \(\alpha ^{\star }\) when \(h_d=1.0\). Unusual magnetic relaxation behaviour is observed in the highly anisotropic system \(A_r=400.0\). Even in a perfectly ordered system (\(\Delta \approx 0\)), the magnetisation ceases to relax for \(\alpha \le 60^\circ \) and \(h_d\le 0.6\) due to large shape anisotropy. Remarkably, the magnetisation decays rapidly for \(\alpha >60^\circ \), independent of \(\Delta \). In such cases, a majority of the magnetic moment reverses its direction by \(180^\circ \), resulting in the negative averaged magnetisation. The effective Néel relaxation time \(\tau _\textrm{N}\) also depends strongly on these parameters. \(\tau _\textrm{N}\) depends weakly on \(\alpha \) and \(\Delta \) for \(h_d\le 0.2\), irrespective of \(A_r\). On the other hand, \(\tau _\textrm{N}\) decreases with \(\alpha \) for significant \(h_d\) provided \(\alpha \) is greater than \(45^\circ \) because of the dominance of the antiferromagnetic coupling. In a highly anisotropic system, there is an enhancement in \(\tau _\textrm{N}\) with \(\alpha \) (\({\le }30^\circ \)) even with moderate \(h_d\), while for \(\alpha >30^\circ \), \(\tau _\textrm{N}\) decreases with \(\alpha \). The lowering of \(\tau _\textrm{N}\) occurs relatively at smaller \(\alpha \) with a large \(h_d\). These observations are useful in diverse applications, such as novel materials, sensors, spintronics-based applications, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N Leo et al, Nat. Commun. 9(1), 1 (2018)

    Article  ADS  Google Scholar 

  2. S Srivastava, D Nykypanchuk, M Fukuto, J D Halverson, A V Tkachenko, K G Yager and O Gang, J. Am. Chem. Soc. 136(23), 8323 (2014)

    Article  Google Scholar 

  3. D Gallina and G Pastor, Phys. Rev. X 10(2), 021068 (2020)

    Google Scholar 

  4. V F Puntes, K M Krishnan and P Alivisatos, Appl. Phys. Lett. 78(15), 2187 (2001)

    Article  ADS  Google Scholar 

  5. C Moya, O Iglesias, X Batlle and A Labarta, J. Phys. Chem C 119(42), 24142 (2015)

    Article  Google Scholar 

  6. Z Wang and E Luijten, Phys. Rev. Lett. 123(9), 096101 (2019)

    Article  ADS  Google Scholar 

  7. E H Sánchez et al, Chem. Mater. 32(3), 969 (2020)

    Article  Google Scholar 

  8. M  Varón, M  Beleggia, T  Kasama, R  Harrison, R E Dunin-Borkowski, V F Puntes and C  Frandsen, Sci. Rep. 3(1), 1 (2013)

    Article  Google Scholar 

  9. L  Peng et al, ACS Nano 12(1), 820 (2018)

    Article  Google Scholar 

  10. M  Anand, Pramana – J. Phys. 95(4), 181 (2021). https://doi.org/10.1007/s12043-021-02222-w

  11. A  Farhan, P  Derlet, A  Kleibert, A  Balan, R  Chopdekar, M  Wyss, L  Anghinolfi, F  Nolting and L J Heyderman, Nat. Phys. 9(6), 375 (2013)

    Article  Google Scholar 

  12. S  Liu, T  Zhu, R  Hu and Z  Liu, Phys. Chem. Chem. Phys. 4(24), 6059 (2002)

    Article  Google Scholar 

  13. V F Puntes, P  Gorostiza, D M Aruguete, N G Bastus and A P Alivisatos, Nat. Mater. 3(4), 263 (2004)

    Article  ADS  Google Scholar 

  14. F  Fabris et al, Nanoscale 11(7), 3164 (2019)

    Article  Google Scholar 

  15. J M Perez, L  Josephson, T  O’Loughlin, D  Högemann and R  Weissleder, Nat. Biotechnol. 20(8), 816 (2002)

    Article  Google Scholar 

  16. K L Pisane, E C Despeaux and M S Seehra, J. Magn. Magn. Mater. 384, 148 (2015)

    Article  ADS  Google Scholar 

  17. R  Hergt, S  Dutz and M  Zeisberger, Nanotechnology 21(1), 015706 (2009)

    Article  ADS  Google Scholar 

  18. W  Wernsdorfer, E B Orozco, K  Hasselbach, A  Benoit, B  Barbara, N  Demoncy, A  Loiseau, H  Pascard and D  Mailly, Phys. Rev. Lett. 78(9), 1791 (1997)

    Article  ADS  Google Scholar 

  19. W  Figueiredo and W  Schwarzacher, J. Phys.: Condens. Matter 19(27), 276203 (2007)

    ADS  Google Scholar 

  20. P M Déjardin, J. Appl. Phys. 110(11), 113921 (2011)

    Article  ADS  Google Scholar 

  21. N  Rizzo, T  Silva and A  Kos, Phys. Rev. Lett. 83(23), 4876 (1999)

    Article  ADS  Google Scholar 

  22. S  Denisov and K  Trohidou, Phys. Status Solidi (A) 189(2), 265 (2002)

    Article  ADS  Google Scholar 

  23. K  Hiroi, K  Komatsu and T  Sato, Phys. Rev. B 83(22), 224423 (2011)

    Article  ADS  Google Scholar 

  24. H  Kesserwan, G  Manfredi, J Y Bigot and P A Hervieux, Phys. Rev. B 84(17), 172407 (2011)

    Article  ADS  Google Scholar 

  25. A  Kuncser, N  Iacob and V E Kuncser, Beilstein J. Nanotechnol. 10(1), 1280 (2019)

    Article  Google Scholar 

  26. S  Shtrikman and E  Wohlfarth, Phys. Lett. A 85(89), 467 (1981)

    Article  ADS  Google Scholar 

  27. S  Mørup, M F Hansen and C  Frandsen, Beilstein J. Nanotechnol. 1(1), 182 (2010)

    Article  Google Scholar 

  28. J  Dormann, L  Bessais and D  Fiorani, J. Phys. C 21(10), 2015 (1988)

    Article  ADS  Google Scholar 

  29. M  Anand, J. Magn. Magn. Mater. 522, 167538 (2021)

    Article  Google Scholar 

  30. M  Salvador, L  Nicolao and W  Figueiredo, J. Magn. Magn. Mater. 538, 168254 (2021)

    Article  Google Scholar 

  31. M  Anand, J. Magn. Magn. Mater. 552, 169201 (2022)

    Article  Google Scholar 

  32. P  Ilg, Phys. Rev. B 95(21), 214427 (2017)

    Article  ADS  Google Scholar 

  33. J  López, P  Lisboa-Filho, W  Passos, W  Ortiz and F  Araujo-Moreira, J. Magn. Magn. Mater. 226, 500 (2001)

    Article  ADS  Google Scholar 

  34. M  Osaci, M  Pănoiu, T  Hepuţ and I  Muscalagiu, Appl. Math. Model. 30(6), 545 (2006)

    Article  Google Scholar 

  35. J C Eloi, M  Okuda, S C Carreira, W  Schwarzacher, M J Correia and W  Figueiredo, J. Phys.: Cond. Matter 26(14), 146006 (2014)

    Google Scholar 

  36. K  Thorkelsson, P  Bai and T  Xu, Nano Today 10(1), 48 (2015)

    Article  Google Scholar 

  37. M  Anand, J. Appl. Phys. 128(2), 023903 (2020)

    Article  ADS  Google Scholar 

  38. T  Yoshida, Y  Matsugi, N  Tsujimura, T  Sasayama, K  Enpuku, T  Viereck, M  Schilling and F  Ludwig, J. Magn. Magn. Mater. 427, 162 (2017)

    Article  ADS  Google Scholar 

  39. J P Wang, Proc. IEEE 96(11), 1847 (2008)

    Article  Google Scholar 

  40. H  Khurshid, R  Yoosuf, B A Issa, A G Attaelmanan and G  Hadjipanayis, Nanomaterials 11(11), 3042 (2021)

  41. N Sharma, G H Jaffari, S I Shah and D J Pochan, Nanotechnology 21(8), 085707 (2010)

    Article  ADS  Google Scholar 

  42. N Usov, M Fdez-Gubieda and J Barandiarán, J. Appl. Phys. 113(2), 023907 (2013)

    Article  ADS  Google Scholar 

  43. I Conde-Leborán, D Serantes and D Baldomir, J. Magn. Magn. Mater. 380, 321 (2015)

    Article  ADS  Google Scholar 

  44. M Anand, V Banerjee and J Carrey, Phys. Rev. B 99(2), 024402 (2019)

    Article  ADS  Google Scholar 

  45. M  Anand, arXiv:2106.14271 (2021)

  46. F A Aldaye, A L Palmer and H F Sleiman, Science 321(5897), 1795 (2008)

    Article  ADS  Google Scholar 

  47. A K Boal, F  Ilhan, J E DeRouchey, T  Thurn-Albrecht, T P Russell and V M Rotello, Nature 404(6779), 746 (2000)

    Article  ADS  Google Scholar 

  48. W U Huynh, J J Dittmer and A P Alivisatos, Science 295(5564), 2425 (2002)

    Article  ADS  Google Scholar 

  49. D  Fava, Z  Nie, M A Winnik and E  Kumacheva, Adv. Mater. 20(22), 4318 (2008)

    Article  Google Scholar 

  50. K M Ryan, A  Mastroianni, K A Stancil, H  Liu and A  Alivisatos, Nano Lett. 6(7), 1479 (2006)

    Article  ADS  Google Scholar 

  51. E  Ploshnik, A  Salant, U  Banin and R  Shenhar, Adv. Mater. 22(25), 2774 (2010)

    Article  Google Scholar 

  52. M  Anand, J  Carrey and V  Banerjee, Phys. Rev. B 94(9), 094425 (2016)

    Article  ADS  Google Scholar 

  53. J  Carrey, B  Mehdaoui and M  Respaud, J. Appl. Phys. 109(8), 083921 (2011)

    Article  ADS  Google Scholar 

  54. M  Anand, J. Magn. Magn. Mater. 540, 168461 (2021)

    Article  Google Scholar 

  55. A  Bupathy, V  Banerjee and J  Carrey, Phys. Rev. B 100(6), 064420 (2019)

    Article  ADS  Google Scholar 

  56. R  Tan, J  Carrey and M  Respaud, Phys. Rev. B 90(21), 214421 (2014)

    Article  ADS  Google Scholar 

  57. M  Azeggagh and H  Kachkachi, Phys. Rev. B 75(17), 174410 (2007)

    Article  ADS  Google Scholar 

  58. R  Tan, J  Lee, J  Cho, S  Noh, D  Kim and Y  Kim, J. Phys. D 43(16), 165002 (2010)

    Article  ADS  Google Scholar 

  59. P  Hänggi, P  Talkner and M  Borkovec, Rev. Mod. Phys. 62(2), 251 (1990)

    Article  ADS  Google Scholar 

  60. M  Anand, Nano 16(9), 2150104 (2021)

    Article  ADS  Google Scholar 

  61. K  De’Bell, A  MacIsaac, I  Booth and J  Whitehead, Phys. Rev. B 55(22), 15108 (1997)

    Article  ADS  Google Scholar 

  62. O  Laslett, S  Ruta, R  Chantrell, J  Barker, G  Friedman and O  Hovorka, Phys. B: Cond. Matter 486, 173 (2016)

    Article  ADS  Google Scholar 

  63. O  Hovorka, J  Barker, G  Friedman and R  Chantrell, Phys. Rev. B 89(10), 104410 (2014)

    Article  ADS  Google Scholar 

  64. H  Song, J  Spencer, A  Jander, J  Nielsen, J  Stasiak, V  Kasperchik and P  Dhagat, J. Appl. Phys. 115(17), 17E308 (2014)

    Article  Google Scholar 

  65. J  Feng, F  Yang, X  Wang, F  Lyu, Z  Li and Y  Yin, Adv. Mater. 31(19), 1900789 (2019)

    Article  Google Scholar 

  66. N I Castellanos, B  Bharti and O D Velev, J. Phys. Chem. B 125(28), 7900 (2021)

  67. A  MacIsaac, J  Whitehead, K  De’Bell and P  Poole, Phys. Rev. Lett. 77(4), 739 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, M. Magnetisation reversal in two-dimensional ensemble of nanoparticles with positional defects. Pramana - J Phys 97, 186 (2023). https://doi.org/10.1007/s12043-023-02669-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02669-z

Keywords

PACS

Navigation