Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cationic control of O2 affinity in lugworm erythrocruorin

Abstract

The erythrocruorins (extracellular haemoglobins from annelids1) have molecular weights of 3–4 ×l06, contain 60–192 O2-binding haem moieties per molecule and are much more complex than the tetrameric vertebrate haemoglobins1–5. However, they perform the same function, carrying O2 from the respiratory surfaces to the tissues, and exhibit similar coopera-tivity in O2 binding and inhibitory heterotropic interactions between O2- and proton-binding sites (Bohr effects), although these functions show greater adaptive variation than in the vertebrate pigments2,3. Whereas erythrocruorin–O2 affinity is insensitive to the anionic organic phosphate cofactors like glycerate-2,3-bisphosphate and ATP1–3, which depress the O2 affinity of vertebrate haemoglobin inside the red blood cells, it is increased by inorganic salts6–8. This effect is important physiologically because annelids lack significant capacity for osmotic regulation and experience large fluctuations in blood electrolyte levels8,9.I show here that, in contrast to the situation in man, where anionic cofactors and protons decrease haemoglobin–O2 affinity by specifically depressing the O2 association equilibrium constant of the pigment in the deoxygenated state10–13, inorganic cations govern the O2 affinity of erythrocruorin from the burrowing, intertidal lugworm, Arenicola marina, by preferentially modifying the association constant of the (almost fully) oxygenated form. In contrast to the vertebrate mechanism, riftich optimizes O2 unloading in the tissues, this alternative control mechanism in erythrocruorin seems to be adaptive to O2 loading at the low O2 tensions generally characteristic of the microenvironments of erythrocruorin-bearing annelids1–3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weber, R. E. in Physiology of Annelids (ed. Mill, P. J.) 393–446 (Academic, New York, 1978).

    Google Scholar 

  2. Magnum, C. P. in Adaptation to Environment (ed. Newell, R. C.) 191–278 (Butterworths, London, 1976).

    Google Scholar 

  3. Weber, R. E. Am. Zool. 20, 79–101 (1980).

    Article  CAS  Google Scholar 

  4. Chung, M. C. M. & Ellerton, H. D. Prog. Biophys. molec. Biol. 35, 53–102 (1979).

    Article  CAS  Google Scholar 

  5. Wood, E. J. Essays Biochem. 16, 1–47 (1980).

    CAS  PubMed  Google Scholar 

  6. Everaarts, J. M. & Weber, R. E. Comp. Biochem. Physiol. A 48, 507–520 (1974).

    Article  CAS  Google Scholar 

  7. Weber, R. E., Bonaventura, J., Sullivan, B. & Bonaventura, C. J. comp. Physiol. 123, 177–184 (1978).

    Article  CAS  Google Scholar 

  8. Krogh-Rasmussen, K. & Weber, R. E. Ophelia 18, 151–170 (1979).

    Article  Google Scholar 

  9. Oglesby, L. in Physiology of Annelids (ed. Mill, P. J.) 555–658 (Academic, New York, 1978).

    Google Scholar 

  10. Tyuma, I., Katsuhiko, K. & Imai, K. Biochem. biophys. Res. Commun. 43, 423–428 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Imai, K. Biochemistry 12, 798–808 (1973); J. biol Chem. 23, 7606–7612 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. Tyuma, I., Imai, K. & Shimizu, K. Biochemistry 12, 1491–1498 (1973).

    Article  CAS  PubMed  Google Scholar 

  13. Imai, K. & Yonetani, T. J. biol. Chem. 250, 2227–2231 (1975).

    CAS  PubMed  Google Scholar 

  14. Wyman, J. Adv. Protein Chem. 19, 223–286 (1964).

    Article  CAS  PubMed  Google Scholar 

  15. Monod, J., Wyman, J. & Changeux, J. -P. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  16. Toulmond, A. Resp. Physiol. 19, 130–144 (1973).

    Article  CAS  Google Scholar 

  17. Warren, L. M., Wells, R. M. G. & Weber, R. E. J. exp. mar. Biol. Ecol. (in the press).

  18. Mangum, C. P. Physiol. Zool. 49, 85–99 (1976).

    Article  CAS  Google Scholar 

  19. Weber, R. E. Comp. Biochem. Physiol. 35, 179–189 (1970).

    Article  CAS  Google Scholar 

  20. Sick, H. & Gersonde, K. Analyt. Biochem. 32, 362–376 (1969).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, R. Cationic control of O2 affinity in lugworm erythrocruorin. Nature 292, 386–387 (1981). https://doi.org/10.1038/292386a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292386a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing