Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient cap-dependent translation of polycistronic prokaryotic mRNAs is restricted to the first gene in the operon

Abstract

Certain polycistronic prokaryotic mRNAs, when modified at their 5′-termini with a cap structure, are translated as efficiently as, or more efficiently than eukaryotic mRNAs in a eukaryotic cell-free protein synthesising system. However, in this case efficient cap-dependent translation is apparently restricted to the 5′-proximal coding sequence. Moreover, certain translational regulatory signals potentially used by these prokaryotic mRNAs to regulate their levels of expression seem to be recognised by the eukaryotic translational components. The evolutionary significance and practical implications of these results are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paterson, B. M. & Rosenberg, M. Nature 279, 692–696 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Roberts, J. W. Nature 224, 1168–1174 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Roberts, J. W. Cold Spring Harb. Symp. quant Biol. 35, 121–126 (1970).

    Article  CAS  Google Scholar 

  4. Rosenberg, M., de Crombrugghe, B. & Weissman, S. J. biol. Chem. 250, 4755–4764 (1975).

    CAS  PubMed  Google Scholar 

  5. Rosenberg, M., Court, D., Shimatake, H., Brady, C. & Wulff, D. Nature 272, 414–423 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Pereira da Silva, L. & Jacob, F. Annls Inst. Pasteur 115, 145 (1968).

    Google Scholar 

  7. Allet, B. & Solem, R. J. molec. Biol. 85, 475–484 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. Reichardt, L. F. J. molec. Biol. 93, 267–288 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, E., Scherer, G., Hobom, G. & Kossel, H. Nature 272, 410–414 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lathe, R. & Lecocq, J. P. Virology 83, 204–206 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Echols, H., Reznichek, J. & Adhya, S. Proc. natn. Acad. Sci. U.S.A. 50, 286–293 (1963).

    Article  ADS  CAS  Google Scholar 

  12. Shapiro, J. A. & Adhya, S. L. Genetics 62, 249–264 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Musso, R., DiLauro, R., Rosenberg, M. & de Crombrugghe, B. Proc. natn. Acad. Sci. U.S.A. 74, 106–110 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Musso, R., DiLauro, R., Adhya, S. & de Crombrugghe, B. Cell 12, 847–854 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Nakanishi, S., Adhya, S., Gottesman, M. & Pastan, I. J. biol. Chem. 249, 4050–4056 (1974).

    CAS  PubMed  Google Scholar 

  16. Musso, R. et al. Proc. natn. Acad. Sci. U.S.A. 71, 4940–4944 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Anderson, C. W., Atkins, J. F. & Dunn, J. J. Proc. natn. Acad. Sci. U.S.A. 73, 2752–2756 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Aviv, H., Boime, I., Loyd, B. & Leder, P. Science 178, 1293–1295 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Wang, S., Marcu, K. B. & Inouye, M. Biochem. biophys. Res. Commun. 68, 1194–1200 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Davies, J. W. & Kaesberg, P. J. Virol. 12, 1434–1441 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schreier, M. H., Staehelin, T., Gesteland, R. F. & Spahr, P. F. J. molec. Biol. 75, 575–578 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Morrison, T. G. & Lodish, H. F. Proc. natn. Acad. Sci. U.S.A. 70, 315–319 (1973).

    Article  ADS  CAS  Google Scholar 

  23. Beck, O. E. & Gassen, H. G. Biochem. biophys. Res. Commun. 74, 16–24 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. Shine, J. & Dalgarno, L. Nature 254, 34–38 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hagenbuckle, O., Santer, M., Steitz, J. A. & Mans, R. J. Cell 13, 551–563 (1978).

    Article  Google Scholar 

  26. Baralle, F. E. Cell 12, 1085–1095 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Baralle, F. E. & Brownlee, G. G. Nature 274, 84–87 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Steitz, J. A. & Jakes, K. Proc. natn. Acad. Sci. U.S.A. 72, 4734–4738 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Rosenberg, M., Kramer, R. & Steitz, J. A. J. molec. Biol. 89, 777–782 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Cory, S. & Adam, J. M. J. molec. Biol. 99, 519–547 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. Steege, D. A. J. molec. Biol., 114, 559–568 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, M., Paterson, B. Efficient cap-dependent translation of polycistronic prokaryotic mRNAs is restricted to the first gene in the operon. Nature 279, 696–701 (1979). https://doi.org/10.1038/279696a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279696a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing