Skip to main content

Advertisement

Log in

Mechanisms of the initiation of protein synthesis: in reading frame binding of ribosomes to mRNA

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The various mechanisms proposed to describe the initiation of protein synthesis are reviewed with a focus on their initiation signals. A characteristic feature of the various mechanisms is that each one of them postulates a distinct initiation signal. The signals of the Shine–Dalgarno (SD), the scanning and the internal ribosome entry site (IRES) mechanisms are all located exclusively in the 5′ leader sequence, whereas, the signal of the cumulative specificity (CS) mechanism includes the entire initiation site (IS). Computer analysis of known E. coli IS sequences showed signal characteristics in the entire model IS consisting of 47 bases, in segments of the 5′ leader and of the protein-coding regions. The proposal that eukaryotic translation actually occurs in two steps is scrutinized. In a first step, initiation factors (eIF4F) interact with the cap of the mRNA, thereby enhancing the accessibility of the IS. In the second step, initiation is by the conserved prokaryotic mechanism in which the ribosomes bind directly to the mRNA without ribosomal scanning. This binding occurs by the proposed process of in reading frame binding of ribosomes to mRNA, which is consistent with the CS mechanism. The basic CS mechanism is able to account for the initiation of translation of leaderless mRNAs, as well as for that of canonical mRNAs. The SD, the scanning and the IRES mechanisms, on the other hand, are inconsistent with the initiation of translation of leaderless mRNAs. Based on these and other observations, it is deemed that the CS mechanism is the universal initiation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CS:

Cumulative specificity

eIF2, eIF4F:

Eukaryotic initiation factors

IF2:

Prokaryotic initiation factor

IRES:

Internal ribosome entry site

IS:

Initiation site

SD:

Shine–Dalgarno

References

  1. Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementary to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Article  CAS  PubMed  Google Scholar 

  2. Kozak M (1978) How do eukaryotic ribosomes select initiation in regions in messenger RNA? Cell 15:1109–1123

    Article  CAS  PubMed  Google Scholar 

  3. Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    CAS  PubMed  Google Scholar 

  4. Pelletier J, Sonnenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  CAS  PubMed  Google Scholar 

  5. Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353:90–94

    Article  CAS  PubMed  Google Scholar 

  6. Nakamoto T (2007) The initiation of eukaryotic and prokaryotic protein synthesis: a selective accessibility and multisubstrate enzyme system. Gene 403:1–5

    Article  CAS  PubMed  Google Scholar 

  7. Scherer GFE, Walkinshaw MD, Arnott S, Morre SDJ (1980) The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both leader and protein coding segment. Nucleic Acids Res 8:3895–3907

    Article  CAS  PubMed  Google Scholar 

  8. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

    Article  CAS  PubMed  Google Scholar 

  9. Poorman RA, Tomasseli AG, Heinrikson RL, Kézdy FJ (1991) A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate database. J Biol Chem 266:14554–14561

    CAS  PubMed  Google Scholar 

  10. Nakamoto T (2009) Evolution and the universality of the mechanism of initiation of protein synthesis. Gene 432:1–6

    Article  CAS  PubMed  Google Scholar 

  11. Hellen CUT, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612

    Article  CAS  PubMed  Google Scholar 

  12. Shatkin J (1976) Capping of eukaryotic mRNAs. Cell 9:645–653

    Article  CAS  PubMed  Google Scholar 

  13. Abramson RD, Dever TE, Lawson TG, Ray BK, Thach RE, Merrick WC (1986) The ATP-dependent interaction of eukaryotic initiation factors with mRNA. J Biol Chem 262:3826–3832

    Google Scholar 

  14. Anthony DD, Merrick WC (1991) Eukaryotic initiation factor (eIF)-4F: implications for a role in internal initiation of translation. J Biol Chem 26:10218–10226

    Google Scholar 

  15. Merrick WC, Hershey WB (1996) The pathway and mechanism of eukaryotic protein synthesis. In: Hershey WB, Mathews MB, Sonnenberg N (eds) Translational control. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 31–69

    Google Scholar 

  16. Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241

    Article  CAS  PubMed  Google Scholar 

  17. Kozak M (1995) Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc Natl Acad Sci USA 92:2662–2666

    Article  CAS  PubMed  Google Scholar 

  18. Merrick WC (2004) Cap-independent and cap-dependent translation in eukaryotic systems. Gene 332:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Komar AA, Hatzoglou M (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280:23425–23428

    Article  CAS  PubMed  Google Scholar 

  20. Stoneley M, Willis AE (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23:3200–3207

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher L, Corbin SD, Browning KS, Ravel JM (1990) The absence of a 7 methyl-G cap on β-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. J Biol Chem 265:19582–19587

    CAS  PubMed  Google Scholar 

  22. Gunnery S, Mathews MB (1995) Functional mRNA can be generated by RNA polymerase III. Mol Cell Biol 15:3597–3607

    CAS  PubMed  Google Scholar 

  23. Gunnery S, Maivali G, Mathews MB (1997) Translation of uncapped mRNA involves scanning. J Biol Chem 272:21642–21646

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez G (2007) Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci 33:58–64

    Article  Google Scholar 

  25. Nakamoto T (2006) A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341:675–678

    Article  CAS  PubMed  Google Scholar 

  26. Stormo GD, Schneider TD, Gold LM (1982) Characterization of translational initiation sites in E. coli. Nucleic Acids Res 10:2971–2996

    Article  CAS  PubMed  Google Scholar 

  27. Melancon P, Leclerc D, Destroismaisons N, Brakier-Gingras L (1990) The anti-Shine–Dalgarno region in Escherichia coli 16S ribosomal RNA is not essential for the correct selection of translational starts. Biochemistry 29:3402–3407

    Article  CAS  PubMed  Google Scholar 

  28. Koshland DE Jr, Hamadani K (2002) Proteomics and models for enzyme cooperativity. J Biol Chem 277:46841–46844

    Article  CAS  PubMed  Google Scholar 

  29. Hui A, Hayflick J, Dinkelspiel K, de Boer HA (1984) Mutagenesis of the three bases preceding the start codon of the galactosidase mRNA and its effect on translation in Escherichia coli. EMBO J 3:623–629

    CAS  PubMed  Google Scholar 

  30. Looman AC, Bodlaender J, Comstock J, Eaton D, Jhurani P, de Boer HA, van Knippenberg PH (1987) Influence of the codon following the AUG initiation codon on the expression of a modified lac Z gene in Escherichi coli. EMBO J 6:2489–2492

    CAS  PubMed  Google Scholar 

  31. Laursen BS, Steffensen SA, Hedegaard J, Moreno JMP, Mortensen KK, Sperling-Petersen HU (2002) Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene. Genes Cells 7:901–910

    Article  CAS  PubMed  Google Scholar 

  32. Shabalina SA, Ogurtsov AY, Nikolay A, Spiridonov NA (2006) A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res 34:2428–2437

    Article  CAS  PubMed  Google Scholar 

  33. Rekosh DM, Lodish HF, Baltimore D (1970) Protein synthesis in Escherichia coli extracts programmed by poliovirus RNA. J Mol Biol 54:327–340

    Article  CAS  PubMed  Google Scholar 

  34. Glover JF, Wilson MA (1982) Efficient translation of the coat protein cistron of tobacco mosaic virus in a cell-free system from Escherichia coli. Eur J Biochem 122:485–492

    Article  CAS  PubMed  Google Scholar 

  35. Siegert WR, Konings RNH, Bauer H, Hofschneider PH (1972) Translation of avian myeloblastosis virus RNA in a cell-free lysate of Eschericihia coli. Proc Natl Acad Sci USA 69:888–891

    Article  CAS  PubMed  Google Scholar 

  36. Morrison TG, Lodish HF (1973) Translation of bacteriophage Qβ RNA by cytoplasmic extracts of mammalian cells. Proc Natl Acad Sci USA 70:315–319

    Article  CAS  PubMed  Google Scholar 

  37. Morrison TG, Lodish HF (1974) Recognition of protein synthesis initiation signals on bacteriophage ribonucleic acid by mammalian ribosomes. J Biol Chem 249:5860–5866

    CAS  PubMed  Google Scholar 

  38. Wang S, Marcu KB, Inouye M (1976) Translation of a specific mRNA from Escherichia coli in a eukaryotic cell-free system. Biochem Biophys Res Commun 68:1194–1200

    Article  CAS  PubMed  Google Scholar 

  39. Paterson BM, Rosenberg M (1979) Efficient translation of prokaryotic mRNAs in a eukaryotic cell-free system requires addition of a cap structure. Nature 279:692–696

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg M, Paterson BM (1979) Efficient cap-dependent translation of polycistronic prokaryotic mRNAs is restricted to the first gene in the operon. Nature 279:696–701

    Article  CAS  PubMed  Google Scholar 

  41. Grill S, Gualerzi C, Londei P, Bläsi U (2000) Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19:4101–4110

    Article  CAS  PubMed  Google Scholar 

  42. Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I (2009) An unexpected type of ribosomes induced by Kasugamycin: a look into ancestral times of protein synthesis. Mol Cell 33:227–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Ferenc J. Kézdy for his invaluable contributions in reviewing this manuscript, and his grandson, Dr. Jonathan Nakamoto, for his help in the literature search.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokumasa Nakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamoto, T. Mechanisms of the initiation of protein synthesis: in reading frame binding of ribosomes to mRNA. Mol Biol Rep 38, 847–855 (2011). https://doi.org/10.1007/s11033-010-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0176-1

Keywords

Navigation