Skip to main content
Article

Negative Affect-Related Autonomic Arousal Mediates the Association Between Baroreflex Dysfunction and Insulin Resistance in Non-Diabetic Young Adults

Published Online:https://doi.org/10.1027/0269-8803/a000226

Abstract. Autonomic dysfunction, in particular under-regulation of heart rate (HR) by the baroreflex, is implicated in development of insulin resistance (IR). According to reactivity hypothesis, sympathetic response to stressors may be more sensitive at predicting IR than baroreceptor sensitivity (BRS), a baseline measure of baroreflex functioning. Using ecological momentary assessment (EMA) of negative affect coupled with minute-to-minute HR and heart-rate variability (HRV) monitoring, we examined whether negative affect (NA)-related autonomic arousal mediates the association of BRS with IR. At baseline, BRS was measured, and fasting serum glucose and insulin levels were collected from 178 young adults (18–39 years old), from which homeostasis model assessment of IR (HOMA-IR) and beta-cell functioning (HOMA %B) were derived. Participants subsequently underwent one day of Holter HR and HRV monitoring while reporting NA levels via EMA. Multilevel modeling was used to assess the associations of momentary NA with HR and low- (LF) and high-frequency (HF) HRV during the 5-minute intervals following each EMA reading. Structural equation modeling was then used to determine whether individual differences in these associations mediated the association of BRS with IR, measured by HOMA-IR, HOMA %B, and insulin levels. As predicted, BRS was negatively associated with the IR (β = −.17, p = .024). However, NA-related autonomic arousal mediated their association, accounting for 56% of the covariance between BRS and IR. Not only do these results provide support for reactivity hypothesis, they reveal a potential point of intervention in the treatment of affective dysregulation.

References

  • Albrink, M. J., Lavietes, P. H. & Man, E. B. (1963). Vascular disease and serum lipids in diabetes mellitus: Observations over thirty years (1931–1961). Annals of Internal Medicine, 58, 305–323. https://doi.org/10.7326/0003-4819-58-2-305 First citation in articleCrossrefGoogle Scholar

  • Anderson, E. A., Hoffman, R. P., Balon, T. W., Sinkey, C. A. & Mark, A. L. (1991). Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. Journal of Clinical Investigation, 87, 2246–2252. https://doi.org/10.1172/JCI115260 First citation in articleCrossrefGoogle Scholar

  • Baron, A. D., Brechtel-Hook, G., Johnson, A. & Hardin, D. (1993). Skeletal muscle blood flow: A possible link between insulin resistance and blood pressure. Hypertension, 21, 129–135. https://doi.org/10.1161/01.HYP.21.2.129 First citation in articleCrossrefGoogle Scholar

  • Beauchaine, T. P. (2015). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 43–47. https://doi.org/10.1016/j.copsyc.2015.01.017 First citation in articleCrossrefGoogle Scholar

  • Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupek, D. G., Gusman, F. D., Charney, D. S. & Keane, T. M. (1995). The development of a clinician-administered posttraumatic stress disorder scale. Journal of Traumatic Stress, 8, 75–80. https://doi.org/0894-9867/95/0100-U075507,50/1 First citation in articleCrossrefGoogle Scholar

  • Bonnet, F., Empana, J.-P., Natali, A., Monti, L., Golay, A., Lalic, K., … Balkau, B. (2015). Elevated heart rate predicts β cell function in non-diabetic individuals: The RISC cohort. European Journal of Endocrinology, 173, 409–415. https://doi.org/10.1530/EJE-15-0115 First citation in articleCrossrefGoogle Scholar

  • Chalmers, J. A., Quintana, D. S., Maree, J., Abbott, A. & Kemp, A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Frontiers in Psychiatry, 5, 1–11. https://doi.org/10.3389/fpsyt.2014.00080 First citation in articleCrossrefGoogle Scholar

  • Cook, S., Togni, M., Schaub, M. C., Wenaweser, P. & Hess, O. M. (2006). High heart rate: A cardiovascular risk factor? European Heart Journal, 27, 2387–2393. https://doi.org/10.1093/eurheartj/ehl259 First citation in articleCrossrefGoogle Scholar

  • Davidson, J. R. T., Book, S. W., Colket, J. T., Tupler, L. A., Roth, S., David, D., … Feldman, M. E. (1997). Assessment of a new self-rating scale for posttraumatic stress disorder: The Davidson Trauma Scale. Psychological Medicine, 27, 153–160. First citation in articleCrossrefGoogle Scholar

  • Dekker, J. M., Crow, R. S., Folsom, A., Hanna, P. J., Liao, D., Swenne, C. A. & Schouten, E. G. (2000). Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC study. Circulation, 102, 1239–1244. https://doi.org/10.1161/01 First citation in articleCrossrefGoogle Scholar

  • Dekker, J. M., Schouten, E. G., Klootwijk, P., Pool, J., Swenne, C. A. & Kromhout, D. (1997). Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men: The ARIC study. American Journal of Epidemiology, 145, 899–908. First citation in articleCrossrefGoogle Scholar

  • Dennis, P. A., Dedert, E. A., van Voorhees, E. E., Watkins, L. L., Hayano, J., Calhoun, P. S., … Beckham, J. C. (2016). Examining the crux of autonomic dysfunction in PTSD: Whether chronic or situational distress underlies elevated heart rate and attenuated heart-rate variability. Psychosomatic Medicine, 78, 805–809. https://doi.org/10.1097/PSY.0000000000000326 First citation in articleCrossrefGoogle Scholar

  • Dennis, P. A., Kimbrel, N. A., Sherwood, A., Calhoun, P. S., Watkins, L. L., Dennis, M. F. & Beckham, J. C. (2017). Trauma and autonomic dysregulation: Episodic – versus systemic – negative affect underlying cardiovascular risk in posttraumatic stress disorder. Psychosomatic Medicine, 79, 496–505. https://doi.org/10.1097/PSY.0000000000000438 First citation in articleCrossrefGoogle Scholar

  • Dennis, P. A., Ulmer, C. S., Calhoun, P. S., Sherwood, A., Watkins, L. L., Dennis, M. F. & Beckham, J. C. (2014). Behavioral health mediators of the link between posttraumatic stress disorder and dyslipidemia. Journal of Psychosomatic Research, 77, 45–50. https://doi.org/10.1016/j.jpsychores.2014.05.001 First citation in articleCrossrefGoogle Scholar

  • Dennis, P. A., Watkins, L., Calhoun, P. S., Oddone, A., Sherwood, A., Dennis, M. F., … Beckham, J. C. (2014). Posttraumatic stress disorder, heart-rate variability, and the mediating role of behavioral health risks. Psychosomatic Medicine, 76, 629–637. https://doi.org/10.1097/PSY.0000000000000110 First citation in articleCrossrefGoogle Scholar

  • Dennis, P. A., Weinberg, J. B., Calhoun, P. S., Watkins, L. L., Sherwood, A., Dennis, M. F. & Beckham, J. C. (2016). An investigation of vago-regulatory and health-behavior accounts for increased inflammation in posttraumatic stress disorder. Journal of Psychosomatic Research, 83, 33–39. https://doi.org/10.1016/j.jpsychores.2016.02.008 First citation in articleCrossrefGoogle Scholar

  • Dunning, B. E., Ahren, B., Veith, R. C. & Taborsky, G. J. (1988). Nonadrenergic sympathetic neural influences on basal pancreatic hormone secretion. American Journal of Physiology-Endocrinology and Metabolism, 255, E785–E792. https://doi.org/10.1152/ajpendo.1988.255.6.E785 First citation in articleCrossrefGoogle Scholar

  • Flaa, A., Aksnes, T. A., Kjeldsen, S. E., Eide, I. & Rostrup, M. (2008). Increased sympathetic reactivity may predict insulin resistance: An 18-year follow-up study. Metabolism, 57(10), 1422–1427. https://doi.org/10.1016/j.metabol.2008.05.012 First citation in articleCrossrefGoogle Scholar

  • Gaggioli, A., Cipresso, P., Serino, S., Campanaro, D. M., Pallavicini, F., Wiederhold, B. K. & Riva, G. (2014). Positive technology: A free mobile platform for the self-management of psychological stress. Annual Review of Cybertherapy and Telemedicine, 199, 25–29. First citation in articleGoogle Scholar

  • Gamboa, A., Okamoto, L. E., Arnold, A. C., Figueroa, R. A., Diedrich, A., Raj, S. R., … Biaggioni, I. (2014). Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension, 64, 867–874. https://doi.org/10.3233/978-1-61499-401-5-25 First citation in articleCrossrefGoogle Scholar

  • Gianaros, P. J., Salomon, K., Zhou, F., Owens, J. F., Edmundowicz, D., Kuller, L. H. & Matthews, K. A. (2005). A greater reduction in high-frequency heart rate variability to a psychological stressor is associated with subclinical coronary and aortic calcification in postmenopausal women. Psychosomatic Medicine, 67, 553. https://doi.org/10.1097/01.psy.0000170335.92770.7a First citation in articleCrossrefGoogle Scholar

  • Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. & Dawber, T. R. (1977). Diabetes, blood lipids, and the role of obesity in coronary heart disease risk for women: The Framingham study. Annals of Internal Medicine, 87, 393–397. https://doi.org/10.7326/0003-4819-87-4-393 First citation in articleCrossrefGoogle Scholar

  • Grassi, G., Seravalle, G., Cattaneo, B. M., Bolla, G. B., Lanfranchi, A., Colombo, M., … Mancia, G. (1995). Sympathetic activation in obese normotensive subjects. Hypertension, 25, 560–563. https://doi.org/10.1161/01.HYP.25.4.560 First citation in articleCrossrefGoogle Scholar

  • Heathers, J. A. (2014). Everything Hertz: Methodological issues in short-term frequency-domain HRV. Frontiers in Physiology, 5, 1–15. https://doi.org/10.3389/fphys.2014.0017 First citation in articleCrossrefGoogle Scholar

  • Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerström, K. O. (1991). The Fagerström Test for Nicotine Dependence: A revision of the Fagerström Tolerance Questionnaire. British Journal of Addiction, 86, 1119–1127. https://doi.org/10.1111/j.1360-0443.1991.tb01879.x First citation in articleCrossrefGoogle Scholar

  • Heponiemi, T., Elovainio, M., Pulkki, L., Puttonen, S., Raitakari, O. & Keltikangas-Järvinen, L. (2007). Cardiac autonomic reactivity and recovery in predicting carotid atherosclerosis: The cardiovascular risk in young Finns study. Health Psychology, 26, 13–21. https://doi.org/10.1037/0278-6133.26.1.13 First citation in articleCrossrefGoogle Scholar

  • Julius, S., Gudbrandsson, T., Jamerson, K. & Andersson, O. (1992). The interconnection between sympathetics, microcirculation, and insulin resistance in hypertension. Blood Pressure, 1, 9–19. First citation in articleCrossrefGoogle Scholar

  • Julius, S., Gudbrandsson, T., Jamerson, K., Shahab, S. T. & Andersson, O. (1991). The hemodynamic link between insulin resistance and hypertension. Journal of Hypertension, 9, 983–986. First citation in articleCrossrefGoogle Scholar

  • Karavidas, M. K., Lehrer, P. M., Vaschillo, E., Vaschillo, B., Marin, H., Buyske, S., … Hassett, A. (2007). Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Applied Psychophysiology and Biofeedback, 32, 19–30. https://doi.org/10.1007/s10484-006-9029-z First citation in articleCrossrefGoogle Scholar

  • Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Brown, K. & Gatt, J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biological Psychiatry, 67, 1067–1074. https://doi.org/10.1016/j.biopsych.2009.12.012 First citation in articleCrossrefGoogle Scholar

  • Kizilbash, M. A., Carnethon, M. R., Chan, C., Jacobs, D. R., Sidney, S. & Liu, K. (2006). The temporal relationship between heart rate recovery immediately after exercise and the metabolic syndrome: The CARDIA study. European Heart Journal, 27, 1592–1596. https://doi.org/10.1093/eurheartj/ehl043 First citation in articleCrossrefGoogle Scholar

  • Krantz, D. S. & Manuck, S. B. (1984). Acute psychophysiologic reactivity and risk of cardiovascular disease: A review and methodologic critique. Psychological Bulletin, 96, 435–464. https://doi.org/10.1093/eurheartj/ehl043 First citation in articleCrossrefGoogle Scholar

  • Laakso, M., Edelman, S., Brechtel, G. & Baron, A. (1990). Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man: A novel mechanism for insulin resistance. Journal of Clinical Investigation, 85, 1844–1852. https://doi.org/10.1172/JCI114644 First citation in articleCrossrefGoogle Scholar

  • Laederach-Hofmann, K., Mussgay, L. & Ruddel, H. (2000). Autonomic cardiovascular regulation in obesity. Journal of Endocrinology, 164, 59–66. https://doi.org/10.1677/joe.0.1640059 First citation in articleCrossrefGoogle Scholar

  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G. & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104. First citation in articleCrossrefGoogle Scholar

  • Mahfoud, F., Schlaich, M., Kindermann, I., Ukena, C., Cremers, B., Brandt, M. C., … Sobotka, P. A. (2011). Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: A pilot study. Circulation, 123, 1940–1946. https://doi.org/10.1161/CIRCULATIONAHA.110.991869 First citation in articleCrossrefGoogle Scholar

  • Manuck, S. B. (1994). Cardiovascular reactivity in cardiovascular disease: “Once more unto the breach”. International Journal of Behavioral Medicine, 1, 4–31. https://doi.org/10.1207/s15327558ijbm0101_2 First citation in articleCrossrefGoogle Scholar

  • Masuo, K., Mikami, H., Ogihara, T. & Tuck, M. L. (1997). Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. American Journal of Hypertension, 10, 77–83. First citation in articleCrossrefGoogle Scholar

  • Mathias, P., Best, L. & Malaisse, W. (1985). Stimulation by glucose and carbamylcholine of phospholipase C in pancreatic islets. Cell Biochemistry and Function, 3, 173–177. First citation in articleCrossrefGoogle Scholar

  • Matthews, K. A., Salomon, K., Brady, S. S. & Allen, M. T. (2003). Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosomatic Medicine, 65, 410–415. https://doi.org/10.1097/01.PSY.0000057612.94797.5F First citation in articleCrossrefGoogle Scholar

  • McFarlane, S. I., Banerji, M. & Sowers, J. R. (2001). Insulin resistance and cardiovascular disease. Journal of Clinical Endocrinology and Metabolism, 86, 713–718. https://doi.org/10.1210/jcem.86.2.7202 First citation in articleGoogle Scholar

  • Nagpal, M., Gleichauf, K. & Ginsberg, J. (2013). Meta-analysis of heart rate variability as a psychophysiological indicator of posttraumatic stress disorder. Trauma & Treatment, 3, 1–8. https://doi.org/10.4172/2167-1222.1000182 First citation in articleGoogle Scholar

  • O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, and Computers, 32, 396–402. First citation in articleCrossrefGoogle Scholar

  • Oddone, A., Dennis, P. A., Calhoun, P. S., Watkins, L., Sherwood, A., Dedert, E. A., … Beckham, J. C. (2015). Orthostatic hypotension in younger individuals with and without posttraumatic stress disorder. Psychological Trauma: Theory, Research, Practice, and Policy, 7, 229–233. https://doi.org/10.1037/a0036716 First citation in articleCrossrefGoogle Scholar

  • Ostrander, L. D., Francis, T., Hayner, N. S., Kjelsberg, M. O. & Epstein, F. H. (1965). The relationship of cardiovascular disease to hyperglycemia. Annals of Internal Medicine, 62, 1188–1198. https://doi.org/10.7326/0003-4819-62-6-1188 First citation in articleCrossrefGoogle Scholar

  • Peira, N., Fredrikson, M. & Pourtois, G. (2014). Controlling the emotional heart: Heart rate biofeedback improves cardiac control during emotional reactions. International Journal of Psychophysiology, 91, 225–231. https://doi.org/10.1016/j.ijpsycho.2013.12.008 First citation in articleCrossrefGoogle Scholar

  • Preacher, K. J. & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879–891. First citation in articleCrossrefGoogle Scholar

  • Prinsloo, G. E., Rauch, H., Lambert, M. I., Muench, F., Noakes, T. D. & Derman, W. E. (2011). The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Applied Cognitive Psychology, 25, 792–801. https://doi.org/10.1002/acp.1750 First citation in articleCrossrefGoogle Scholar

  • Reaven, G. (2005). Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Medica, 47, 201–210. First citation in articleGoogle Scholar

  • Rogers, R. G. (2001). Structured Clinical Interview for DSM-IV Disorders (SCID) and other Axis 1 interviews. In R. RogersEd., Handbook of diagnostic and structured interviewing (pp. 103–148). New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Rowe, J. W., Young, J. B., Minaker, K. L., Stevens, A. L., Pallotta, J. & Landsberg, L. (1981). Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes, 30, 219–225. https://doi.org/10.2337/diab.30.3.219 First citation in articleCrossrefGoogle Scholar

  • Satyapriya, M., Nagendra, H. R., Nagarathna, R. & Padmalatha, V. (2009). Effect of integrated yoga on stress and heart rate variability in pregnant women. International Journal of Gynecology and Obstetrics, 104, 218–222. https://doi.org/10.1016/j.ijgo.2008.11.013 First citation in articleCrossrefGoogle Scholar

  • Schroeder, E. B., Chambless, L. E., Liao, D., Prineas, R. J., Evans, G. W., Rosamond, W. D. & Heiss, G. (2005). Diabetes, glucose, insulin, and heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care, 28, 668–674. https://doi.org/10.2337/diacare.28.3.668 First citation in articleCrossrefGoogle Scholar

  • Searle, S. R., Casella, G. & McCulloch, C. E. (1992). Variance components. New York, NY: Wiley. First citation in articleCrossrefGoogle Scholar

  • Shah, A. J., Lampert, R., Goldberg, J., Veledar, E., Bremner, J. D. & Vaccarino, V. (2013). Posttraumatic stress disorder and impaired autonomic modulation in male twins. Biological Psychiatry, 73, 1103–1110. https://doi.org/10.1016/j.biopsych.2013.01.019 First citation in articleCrossrefGoogle Scholar

  • Sharp, R., Culbert, S., Cook, J., Jennings, A. & Burr, I. (1974). Cholinergic modification of glucose-induced biphasic insulin release in vitro. Journal of Clinical Investigation, 53, 710–716. https://doi.org/10.1172/JCI107609 First citation in articleCrossrefGoogle Scholar

  • Siepmann, M., Aykac, V., Unterdörfer, J., Petrowski, K. & Mueck-Weymann, M. (2008). A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects. Applied Psychophysiology and Biofeedback, 33, 195–201. https://doi.org/10.1007/s10484-008-9064-z First citation in articleCrossrefGoogle Scholar

  • Simonson, D. (1990). Hyperinsulinemia and its sequelae. Hormone and Metabolic Research. Supplement Series, 22, 17–25. First citation in articleGoogle Scholar

  • Steptoe, A. & Marmot, M. (2005). Impaired cardiovascular recovery following stress predicts 3-year increases in blood pressure. Journal of Hypertension, 23, 529–536. https://doi.org/10.1097/01.hjh.0000160208.66405.a8 First citation in articleCrossrefGoogle Scholar

  • Tentolouris, N., Argyrakopoulou, G. & Katsilambros, N. (2008). Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Medicine, 10, 169–178. https://doi.org/10.1007/s12017-008-8022-5 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Yamamoto, S. S. & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141, 122–131. https://doi.org/10.1016/j.ijcard.2009.09.543 First citation in articleCrossrefGoogle Scholar

  • Vollenweider, P., Randin, D., Tappy, L., Jequier, E., Nicod, P. & Scherrer, U. (1994). Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans. Journal of Clinical Investigation, 93, 2365–2371. https://doi.org/10.1172/JCI117242 First citation in articleCrossrefGoogle Scholar

  • Wallace, T. M., Levy, J. C. & Matthews, D. R. (2004). Use and abuse of HOMA modeling. Diabetes Care, 27, 1487–1495. https://doi.org/10.2337/diacare.27.6.1487 First citation in articleCrossrefGoogle Scholar

  • Williams, R.Matthews, K.Weiss, S.Detre, T.Dembroski, T.Falkner, B.Manuck, S. (Eds.). (1986). Handbook of stress, reactivity, and cardiovascular disease (Vol. 6). New York, NY: Wiley. First citation in articleGoogle Scholar