Skip to main content
Published Online:https://doi.org/10.1024/2235-0977/a000303

Abstract. The goal of this article was to highlight important issues that have to be considered when designing an electroencephalography (EEG)-based neurofeedback training for children with Autism Spectrum Disorder and to provide practical advice for a successful implementation. Autism is a heterogeneous and complex disorder, which leads to a broad and varied profile of symptoms as well as to huge individual differences between the affected children. This is why the neurofeedback training protocol has to be individually designed based on the specific symptoms as well as in consideration of the existing theories about aberrant brain activity, and why it then needs to be evaluated empirically. Furthermore, neurofeedback training has to be optimized individually regarding the specific control signal, feedback and practical implementations in order to lead to the desired improvements.


Erfolgreiche Neurofeedback-Trainings für Kinder mit Autismus-Spektrum-Störung

Zusammenfassung. Das Ziel dieser Studie war es, auf die Herausforderungen eines Elektroenzephalographie (EEG)-basierten Neurofeedback Trainings für Kinder mit einer Autismus-Spektrum-Störung aufmerksam zu machen und praktische Tipps für eine erfolgreiche Umsetzung zu geben. Autismus ist eine komplexe und heterogene Störung. Dies führt zu einer großen Palette an unterschiedlichen Symptomen sowie zu großen individuellen Unterschieden zwischen den betroffenen Kindern. Deshalb sollte das Neurofeedback Training basierend auf den spezifischen Symptomen und in Betracht der Literatur über zugrundeliegende Störungen der Gehirnnetzwerke individuell konzipiert und dann empirisch getestet werden. Zusätzlich sollte das Neurofeedback Training bezüglich des Kontrollsignals, des Feedbacks und der praktischen Implementierung individuell optimiert werden um die gewünschten Verbesserungen zu erzielen.

References

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders DSM-5 (5th ed.). https://doi.org/10.1176/ajp.105.12.920 First citation in articleGoogle Scholar

  • Anderson, J. S., Nielsen, J. A., Froehlich, A. L., Dubray, M. B., Druzgal, T. J., Cariello, A. N. et al. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134 (12), 3739–3751. https://doi.org/10.1093/brain/awr263 First citation in articleCrossrefGoogle Scholar

  • Aragón, O. R., Sharer, E. A., Bargh, J. A. & Pineda, J. A. (2014). Modulations of mirroring activity by desire for social connection and relevance of movement. Social Cognitive and Affective Neuroscience, 9 (11), 1762–1769. https://doi.org/10.1093/scan/nst172 First citation in articleCrossrefGoogle Scholar

  • Arnstein, D., Cui, F., Keysers, C., Maurits, N. M. & Gazzola, V. (2011). μ-Suppression during action observation and execution correlates with BOLD in dorsal Premotor, inferior parietal, and SI cortices. Journal of Neuroscience, 31 (40), 14243–14249. https://doi.org/10.1523/JNEUROSCI.0963-11.2011 First citation in articleCrossrefGoogle Scholar

  • Bernier, R., Dawson, G., Webb, S. & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and Cognition, 64 (3), 228–237. https://doi.org/10.1016/j.bandc.2007.03.004 First citation in articleCrossrefGoogle Scholar

  • Braadbaart, L., Williams, J. H. G. & Waiter, G. D. (2013). Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? International Journal of Psychophysiology, 89 (1), 99–105. https://doi.org/10.1016/j.ijpsycho.2013.05.019 First citation in articleCrossrefGoogle Scholar

  • Brown, C., Gruber, T., Boucher, J., Rippon, G. & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41 (3), 364–376. https://doi.org/10.1016/S0010-9452(08)70273-9 First citation in articleCrossrefGoogle Scholar

  • Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011 First citation in articleCrossrefGoogle Scholar

  • Cantor, D. S. & Chabot, R. (2009). QEEG studies in the assessment and treatment of childhood disorders. Clinical EEG and Neuroscience, 40 (2), 113–121. https://doi.org/10.1177/155005940904000209 First citation in articleCrossrefGoogle Scholar

  • Caramazza, A., Anzellotti, S., Strnad, L. & Lingnau, A. (2014). Embodied Cognition and Mirror Neurons: A Critical Assessment. Annual Review of Neuroscience, 37 (1), 1–15. https://doi.org/10.1146/annurev-neuro-071013-013950 First citation in articleCrossrefGoogle Scholar

  • Catmur, C. (2015). Understanding intentions from actions: Direct perception, inference, and the roles of mirror and mentalizing systems. Consciousness and Cognition, 36, 426–433. https://doi.org/10.1016/j.concog.2015.03.012 First citation in articleCrossrefGoogle Scholar

  • Cheng, Y., Lee, P. L., Yang, C. Y., Lin, C. P., Hung, D. & Decety, J. (2008). Gender differences in the mu rhythm of the human mirror-neuron system. PLoS ONE, 3 (5), 1–7. https://doi.org/10.1371/journal.pone.0002113 First citation in articleCrossrefGoogle Scholar

  • Cheng, Y., Yang, C. Y., Lin, C. P., Lee, P. L. & Decety, J. (2008). The perception of pain in others suppresses somatosensory oscillations: A magnetoencephalography study. NeuroImage, 40 (4), 1833–1840. https://doi.org/10.1016/j.neuroimage.2008.01.064 First citation in articleCrossrefGoogle Scholar

  • Coben, R., Clarke, A. R., Hudspeth, W. & Barry, R. J. (2008). EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology, 119 (5), 1002–1009. https://doi.org/10.1016/j.clinph.2008.01.013 First citation in articleCrossrefGoogle Scholar

  • Coben, R., Linden, M. & Myers, T. E. (2010). Neurofeedback for autistic spectrum disorder: A review of the literature. Applied Psychophysiology Biofeedback, 35 (1), 83–105. https://doi.org/10.1007/s10484-009-9117-y First citation in articleCrossrefGoogle Scholar

  • Coben, R. & Myers, T. E. (2010). The relative efficacy of connectivity guided and symptom based EEG biofeedback for autistic disorders. Applied Psychophysiology Biofeedback, 35 (1), 13–23. https://doi.org/10.1007/s10484-009-9102-5 First citation in articleCrossrefGoogle Scholar

  • Coben, R. & Padolsky, I. (2007). Assessment-Guided neurofeedback for Autistic Spectrum Disorder. Journal of Neurotherapy, 11 (1), 5–22. First citation in articleCrossrefGoogle Scholar

  • Courellis, H. S., Courelli, A. S., Friedrich, E. V. C. & Pineda, J. A. (2019). Using a Novel Approach to Assess Dynamic Cortical Connectivity Changes Following Neurofeedback Training in Children on the Autism Spectrum. In L. M. ObermanP. G. Enticott (Eds.), Neurotechnology and Brain Stimulation in Pediatric Psychiatric and Neurodevelopmental Disorders (Vol. 11, pp. 253–276). https://doi.org/10.1007/s10803-016-2923-1 First citation in articleGoogle Scholar

  • Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience 9 (1), 28–30. https://doi.org/10.1038/nn1611.Understanding First citation in articleCrossrefGoogle Scholar

  • Duffy, F. H. & Als, H. (2012). A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls – a large case control study. BMC Medicine, 10 (1), 64. https://doi.org/10.1186/1741-7015-10-64 First citation in articleCrossrefGoogle Scholar

  • Enticott, P. G., Kennedy, H. A., Rinehart, N. J., Bradshaw, J. L., Tonge, B. J., Daskalakis, Z. J. et al. (2013). Interpersonal motor resonance in autism spectrum disorder: Evidence against a global “mirror system” deficit. Frontiers in Human Neuroscience, 7 (MAY), 1–8. https://doi.org/10.3389/fnhum.2013.00218 First citation in articleCrossrefGoogle Scholar

  • Friedrich, E. V. C., Scherer, R., Faller, J. & Neuper, C. (2011). Do user-related factors of motor impaired and able-bodied participants correlate with classification accuracy? Proceedings of the 5th International Brain-Computer Interface Conference (2011), 156–159. First citation in articleGoogle Scholar

  • Friedrich, E. V. C., Neuper, C. & Scherer, R. (2013). Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PloS One, 8 (9), e76214. https://doi.org/10.1371/journal.pone.0076214 First citation in articleCrossrefGoogle Scholar

  • Friedrich, E. V. C., Sivanathan, A., Lim, T., Suttie, N., Louchart, S., Pillen, S. et al. (2015). An Effective Neurofeedback Intervention to Improve Social Interactions in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45 (12), 4084–4100. https://doi.org/10.1007/s10803-015-2523-5 First citation in articleCrossrefGoogle Scholar

  • Friedrich, E. V. C., Suttie, N., Sivanathan, A., Lim, T., Louchart, S. & Pineda, J. A. (2014). Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Frontiers in Neuroengineering, 7 (JUL), 1–7. https://doi.org/10.3389/fneng.2014.00021 First citation in articleCrossrefGoogle Scholar

  • Friedrich, E. V. C., Wood, G., Scherer, R. & Neuper, C. (2015). Mind Over Brain, Brain Over Mind: Cognitive Causes and Consequences of Controlling Brain Activity. Frontiers in Human Neuroscience 8 (348) https://doi.org/10.3389/978-2-88919-663-0 First citation in articleGoogle Scholar

  • Frith, C. D. & Frith, U. (2006). The Neural Basis of Mentalizing. Neuron, 50 (4), 531–534. https://doi.org/10.1016/j.neuron.2006.05.001 First citation in articleCrossrefGoogle Scholar

  • Gallese, V., Keysers, C. & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8 (9), 396–403. https://doi.org/10.1016/j.tics.2004.07.002 First citation in articleCrossrefGoogle Scholar

  • Gotts, S. J., Ramot, M., Jasmin, K. & Martin, A. (2019). Altered resting-state dynamics in autism spectrum disorder: Causal to the social impairment? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 90 (November 2018), 28–36. https://doi.org/10.1016/j.pnpbp. 2018.11.002 First citation in articleCrossrefGoogle Scholar

  • Hadjikhani, N., Joseph, R. M., Snyder, J. & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16 (9), 1276-1282. https://doi.org/10.1093/cercor/bhj069 First citation in articleCrossrefGoogle Scholar

  • Hamilton, A. & Marsh, L. (2013). Two systems for action comprehension in autism: Mirroring and mentalizing. In Baron-CohenTager-FlusbergLombardo (Eds.), Understanding Other Minds: Perspectives from developmental social neuroscience (pp. 380–396). https://doi.org/10.1093/acprof:oso/9780199692972 First citation in articleGoogle Scholar

  • Hickok, G. (2009). Eight Problems for the Mirror Neuron Theory of Action Understanding in Monkeys and Humans. Journal of Cognitive Neuroscience, 21 (7), 1229–1243. https://doi.org/10.1162/jocn.2009.21189.Eight First citation in articleCrossrefGoogle Scholar

  • Holtmann, M., Steiner, S., Hohmann, S., Poustka, L., Banaschewski, T. & Bölte, S. (2011). Neurofeedback in autism spectrum disorders. Developmental Medicine and Child Neurology, 53 (11), 986–993. https://doi.org/10.1111/j.1469-8749.2011.04043.x First citation in articleCrossrefGoogle Scholar

  • Imperatori, C., Della Marca, G., Amoroso, N., Maestoso, G., Valenti, E. M., Massullo, C. et al. (2017). Alpha/Theta Neurofeedback Increases Mentalization and Default Mode Network Connectivity in a Non-Clinical Sample. Brain Topography, 30 (6), 822–831. https://doi.org/10.1007/s10548-017-0593-8 First citation in articleCrossrefGoogle Scholar

  • Jarusiewicz, B. (2002). Efficacy of Neurofeedback for Children in the Autistic Spectrum : A Pilot Study. Journal of Neurotherapy, 6, 39–49. https://doi.org/10.1300/J184v06n04_05 First citation in articleCrossrefGoogle Scholar

  • Just, M. A., Cherkassky, V. L., Keller, T. A. & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127 (8), 1811–1821. https://doi.org/10.1093/brain/awh199 First citation in articleCrossrefGoogle Scholar

  • Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K. & Varma, S. (2012). Autism as a neural systems disorder. Neuroscience and Biobehavioral Reviews, 36 (4), 1292–1313. https://doi.org/10.1016/j.neubiorev.2012.02.007.Autism First citation in articleCrossrefGoogle Scholar

  • Keuken, M. C., Hardie, A., Dorn, B. T., Dev, S., Paulus, M. P., Jonas, K. J. et al. (2011). The role of the left inferior frontal gyrus in social perception: An rTMS study. Brain Research, 1383, 196–205. https://doi.org/10.1016/j.brainres.2011.01.073 First citation in articleCrossrefGoogle Scholar

  • Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J. & Just, M. A. (2008). fMRI Investigation of Working Memory for Faces in Autism: Visual Coding and Underconnectivity with Frontal Areas. Cerebal Cortex, 18 (2), 289–300. https://doi.org/10.1093/cercor/bhm054.fMRI First citation in articleCrossrefGoogle Scholar

  • Kouijzer, M. E. J., de Moor, J. M. H., Gerrits, B. J. L., Buitelaar, J. K. & van Schie, H. T. (2009). Long-term effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3 (2), 496–501. https://doi.org/10.1016/j.rasd.2008.10.003 First citation in articleCrossrefGoogle Scholar

  • Kouijzer, M. E. J., de Moor, J. M. H., Gerrits, B. J. L., Congedo, M. & van Schie, H. T. (2009). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3 (1), 145–162. https://doi.org/10.1016/j.rasd.2008.05.001 First citation in articleCrossrefGoogle Scholar

  • Kouijzer, M. E. J., van Schie, H. T., de Moor, J. M. H., Gerrits, B. J. L. & Buitelaar, J. K. (2010). Neurofeedback treatment in autism. Preliminary findings in behavioral, cognitive, and neurophysiological functioning. Research in Autism Spectrum Disorders, 4 (3), 386–399. https://doi.org/10.1016/j.rasd.2009.10.007 First citation in articleCrossrefGoogle Scholar

  • Kuhlman, W. N. (1978). EEG feedback training: Enhancement of somatosensory cortical activity. Electroencephalography and Clinical Neurophysiology, 45 (2), 290–294. https://doi.org/10.1016/0013-4694(78)90014-7 First citation in articleCrossrefGoogle Scholar

  • LaMarca, K., Gevirtz, R., Lincoln, A. J. & Pineda, J. A. (2018). Facilitating Neurofeedback in Children with Autism and Intellectual Impairments Using TAGteach. Journal of Autism and Developmental Disorders, 48 (6), 2090–2100. https://doi.org/10.1007/s10803-018-3466-4 First citation in articleCrossrefGoogle Scholar

  • Marzbani, H., Marateb, H. R. & Mansourian, M. (2016). Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7 (2), 143–158. https://doi.org/10.15412/j.bcn.03070208 First citation in articleGoogle Scholar

  • Meyer, M. L. & Lieberman, M. D. (2012). Social working memory: Neurocognitive networks and directions for future research. Frontiers in Psychology, 3 (DEC), 1–11. https://doi.org/10.3389/fpsyg.2012.00571 First citation in articleCrossrefGoogle Scholar

  • Mostofsky, S. H., Dubey, P., Jerath, V. K., Jansiewicz, E. M., Goldberg, M. C. & Denckla, M. B. (2006). Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. Journal of the International Neuropsychological Society, 12 (3), 314–326. https://doi.org/10.1017/S1355617706060437 First citation in articleCrossrefGoogle Scholar

  • Murias, M., Webb, S. J., Greenson, J. & Dawson, G. (2007). Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry, 62 (3), 270–273. https://doi.org/10.1016/j.biopsych.2006.11.012 First citation in articleCrossrefGoogle Scholar

  • Muthukumaraswamy, S. D. & Johnson, B. W. (2004). Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology, 41 (1), 152–156. https://doi.org/10.1046/j.1469-8986.2003.00129.x First citation in articleCrossrefGoogle Scholar

  • Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004). Mu rhythm modulation during observation of an object-directed grasp. Cognitive Brain Research, 19 (2), 195–201. https://doi.org/10.1016/j.cogbrainres.2003.12.001 First citation in articleCrossrefGoogle Scholar

  • Neuper, C., Scherer, R., Wriessnegger, S. & Pfurtscheller, G. (2009). Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clinical Neurophysiology, 120 (2), 239–247. https://doi.org/10.1016/j.clinph.2008.11.015 First citation in articleCrossrefGoogle Scholar

  • Nishitani, N., Avikainen, S. & Hari, R. (2004). Abnormal Imitation-Related Cortical Activation Sequences in Asperger's Syndrome. Annals of Neurology, 55 (4), 558–562. https://doi.org/10.1002/ana.20031 First citation in articleCrossrefGoogle Scholar

  • Nowlis, D. P. & Kamiya, J. (1970). The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology, 6 (4), 476–484. First citation in articleCrossrefGoogle Scholar

  • Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S. & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24 (2), 190–198. https://doi.org/10.1016/j.cogbrainres.2005.01.014 First citation in articleCrossrefGoogle Scholar

  • Oberman, L. M., Pineda, J. A. & Ramachandran, V. S. (2007). The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2 (1), 62–66. https://doi.org/10.1093/scan/nsl022 First citation in articleCrossrefGoogle Scholar

  • Oberman, L. M. & Ramachandran, V. S. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133 (2), 310–327. https://doi.org/10.1037/0033-2909.133.2.310 First citation in articleCrossrefGoogle Scholar

  • Oberman, L. M., Ramachandran, V. S. & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46 (5), 1558–1565. https://doi.org/10.1016/j.neuropsychologia.2008.01.010 First citation in articleCrossrefGoogle Scholar

  • Orndorff-Plunkett, F., Singh, F., Aragón, O. R. & Pineda, J. A. (2017). Assessing the effectiveness of neurofeedback training in the context of clinical and social neuroscience. Brain Sciences, 7 (8), 1–22. https://doi.org/10.3390/brainsci7080095 First citation in articleCrossrefGoogle Scholar

  • Perry, A., Bentin, S., Shalev, I., Israel, S., Uzefovsky, F., Bar-On, D. et al. (2010). Intranasal oxytocin modulates EEG mu/alpha and beta rhythms during perception of biological motion. Psychoneuroendocrinology, 35 (10), 1446–1453. https://doi.org/10.1016/j.psyneuen.2010.04.011 First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A., Brang, D., Hecht, E., Edwards, L., Carey, S., Bacon, M. et al. (2008). Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Research in Autism Spectrum Disorders, 2 (3), 557–581. https://doi.org/10.1016/j.rasd.2007.12.003 First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A. & Hecht, E. (2009). Mirroring and mu rhythm involvement in social cognition: Are there dissociable subcomponents of theory of mind? Biological Psychology, 80 (3), 306–314. https://doi.org/10.1016/j.biopsycho.2008.11.003 First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A., Allison, B. Z. & Vankov, A. (2000). The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's): Toward a brain-computer interface (BCI). IEEE Transactions on Rehabilitation Engineering, 8 (2), 219–222. First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research Reviews, 50 (1), 57–68. https://doi.org/10.1016/j.brainresrev.2005.04.005 First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A., Carrasco, K., Datko, M., Pillen, S. & Schalles, M. (2014). Neurofeedback training produces normalization in behavioural and electrophysiological measures of high-functioning autism. Philosophical Transactions of the Royal Society: Biological Sciences, 369, 20130183. https://doi.org/10.1098/rstb.2013.0183 First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A., Friedrich, E. V. C. & LaMarca, K. (2014). Neurorehabilitation of social dysfunctions: a model-based neurofeedback approach for low and high-functioning autism. Frontiers in Neuroengineering, 7 (August), 1–6. https://doi.org/10.3389/fneng.2014.00029 First citation in articleCrossrefGoogle Scholar

  • Raymaekers, R., Wiersema, J. R. & Roeyers, H. (2009). EEG study of the mirror neuron system in children with high functioning autism. Brain Research, 1304, 113–121. https://doi.org/10.1016/j.brainres.2009.09.068 First citation in articleCrossrefGoogle Scholar

  • Rizzolatti, G. & Craighero, L. (2004). The Mirror-Neuron System.Annual Review of Neuroscience, 27 (1), 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230 First citation in articleCrossrefGoogle Scholar

  • Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Consciousness and Cognition, 17 (2), 457–467. First citation in articleCrossrefGoogle Scholar

  • Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009 First citation in articleCrossrefGoogle Scholar

  • Schuwerk, T., Döhnel, K., Sodian, B., Keck, I. R., Rupprecht, R. & Sommer, M. (2014). Functional activity and effective connectivity of the posterior medial prefrontal cortex during processing of incongruent mental states. Human Brain Mapping, 35 (7), 2950–2965. https://doi.org/10.1002/hbm.22377 First citation in articleCrossrefGoogle Scholar

  • Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M. & Mohammadi, M. (2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36 (2), 957–963. https://doi.org/10.1007/s10916-010-9560-6 First citation in articleCrossrefGoogle Scholar

  • Spreng, R. N., Mar, R. A. & Kim, A. S. N. (2009). The Common Neural Basis of Autobiographical Memory, Prospection, Naviation, Theory of Mind an the Default Mode: A Quantitative Meta-analysis. Journal of Cognitive Neuroscience, 21 (3), 489–510. https://doi.org/10.1162/jocn.2008.21029 First citation in articleCrossrefGoogle Scholar

  • Spunt, R. P. & Lieberman, M. D. (2013). The Busy Social Brain: Evidence for Automaticity and Control in the Neural Systems Supporting Social Cognition and Action Understanding. Psychological Science, 24 (1), 80–86. https://doi.org/10.1177/0956797612450884 First citation in articleCrossrefGoogle Scholar

  • Spunt, R. P., Satpute, A. B., & Lieberman, M. D. (2011). Identifying the what, why, and how of an observed action: An fMRI study of mentalizing and mechanizing during action observation. Journal of Cognitive Neuroscience, 23 (1), 63–74. https://doi.org/10.1162/jocn.2010.21446 First citation in articleCrossrefGoogle Scholar

  • Stieglitz Ham, H., Bartolo, A., Corley, M., Rajendran, G., Szabo, A. & Swanson, S. (2011). Exploring the relationship between gestural recognition and imitation: Evidence of dyspraxia in autism spectrum disorders. Journal of Autism and Developmental Disorders, 41 (1), 1–12. https://doi.org/10.1007/s10803-010-1011-1 First citation in articleCrossrefGoogle Scholar

  • Théoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-Flusberg, H. & Pascual-Leone, A. (2005). Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Current Biology, 15 (3), 84–85. https://doi.org/10.1016/j.cub.2005.01.022 First citation in articleCrossrefGoogle Scholar

  • Thompson, L., Thompson, M. & Reid, A. (2010a). Functional neuroanatomy and the rationale for using EEG biofeedback for clients with Asperger's syndrome. Applied Psychophysiology Biofeedback, 35 (1), 39–61. https://doi.org/10.1007/s10484-009-9095-0 First citation in articleCrossrefGoogle Scholar

  • Thompson, L., Thompson, M. & Reid, A. (2010b). Neurofeedback outcomes in clients with Asperger's Syndrome. Applied Psychophysiology Biofeedback, 35 (1), 63–81. https://doi.org/10.1007/s10484-009-9120-3 First citation in articleCrossrefGoogle Scholar

  • Trapp, K., Spengler, S., Wüstenberg, T., Wiers, C. E., Busch, N. A. & Bermpohl, F. (2014). Imagining triadic interactions simultaneously activates mirror and mentalizing systems. NeuroImage, 98, 314–323. https://doi.org/10.1016/j.neuroimage.2014.05.003 First citation in articleCrossrefGoogle Scholar

  • Turella, L., Pierno, A. C., Tubaldi, F. & Castiello, U. (2009). Mirror neurons in humans: Consisting or confounding evidence? Brain and Language, 108 (1), 10–21. https://doi.org/10.1016/j.bandl.2007.11.002 First citation in articleCrossrefGoogle Scholar

  • Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30 (3), 829–858. https://doi.org/10.1002/hbm.20547 First citation in articleCrossrefGoogle Scholar

  • Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N. & Müller, R. A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. NeuroImage, 25 (3), 916–925. https://doi.org/10.1016/j.neuroimage.2004.12.022 First citation in articleCrossrefGoogle Scholar

  • Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., Falkai, P. et al. (2001). Mind reading: Neural mechanisms of theory of mind and self-perspective. NeuroImage, 14 (1 I), 170–181. https://doi.org/10.1006/nimg.2001.0789 First citation in articleCrossrefGoogle Scholar

  • Wang, Y. & Hamilton, A. F. de C. (2012). Social top-down response modulation (STORM): a model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 6 (June), 1–10. https://doi.org/10.3389/fnhum.2012.00153 First citation in articleCrossrefGoogle Scholar

  • Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S. et al. (2005). Functional disconnectivity of the medial temporal lobe in Asperger's syndrome. Biological Psychiatry, 57 (9), 991–998. https://doi.org/10.1016/j.biopsych.2005.01.028 First citation in articleCrossrefGoogle Scholar

  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G. & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113 (6), 767–791. First citation in articleCrossrefGoogle Scholar

  • Zigmond, M. J., Rowland, L. P. & Coyle, J. T. (Eds.). (2015). Biological Basis of Neurological and Psychiatric Disorders. Academic Press. First citation in articleGoogle Scholar