Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T08:59:32.499Z Has data issue: false hasContentIssue false

Goosegrass (Eleusine indica) resistant to multiple herbicide modes of action in Brazil

Published online by Cambridge University Press:  13 April 2023

Lucas da Silva Araújo
Affiliation:
Researcher, Staphyt, Formosa, Goiás, Brazil
Núbia Maria Correia*
Affiliation:
Researcher, Embrapa Cerrados, Brasilia, DF, Brazil
Valdemar Luiz Tornisielo
Affiliation:
Researcher, Ecotoxicology Laboratory, CENA/USP, Piracicaba, SP, Brazil
Mônica Teresa Veneziano Labate
Affiliation:
Senior Research Scientist, Max Feffer Laboratory for Plant Genetics, ESALQ/USP, Piracicaba, SP, Brazil
Siu Mui Tsai
Affiliation:
Researcher, Cell and Molecular Biology Laboratory, CENA/USP, Piracicaba, SP, Brazil
Caio Antônio Carbonari
Affiliation:
Professor, Department of Plant Protection, FCA/UNESP, Botucatu, SP, Brazil
Ricardo Victoria Filho
Affiliation:
Professor, Department of Plant Protection, ESALQ/USP, Piracicaba, SP, Brazil
*
Corresponding author: Núbia Maria Correia, Brazilian Agricultural Research Corporation, Embrapa Cerrados, BR-020 Road, Km 18 P.O. Box 08223, 73310-970 Brasilia, DF, Brazil. (Email: nubia.correia@embrapa.br)

Abstract

This study was developed based on a goosegrass [Eleusine indica (L.) Gaertn.] population from Primavera do Leste, MT, Brazil, with resistance to multiple herbicide modes of action (5-enolpyruvylshikimate-3-phosphate synthase [EPSPS] inhibition: glyphosate; acetyl-coenzyme A carboxylase [ACCase] inhibition: aryloxyphenoxypropionate chemical group). The objective was to identify possible mechanisms of resistance associated or not with herbicide sites of action. Several experiments and analyses were carried out with the contribution of different laboratories and institutions. The results obtained allowed us to conclude that: (1) the Asp-2078-Gly mutation conferred resistance to ACCase inhibitors, without overexpression of ACCase or changes in herbicide absorption and translocation; (2) overexpression of EPSPS, Thr-102 and Pro-106 mutations, and changes in absorption and translocation are not involved in E. indica resistance to glyphosate; (3) the metabolism of glyphosate in resistant E. indica plants requires further studies to elucidate the final destination of this herbicide in these plants. The mechanism of resistance of E. indica biotypes to ACCase-inhibiting herbicides was elucidated: it involves a change in the action site. However, the mechanism of resistance to EPSPS inhibitors was not conclusive, indicating that some hypotheses, mainly those regarding the metabolism of glyphosate in resistant plants, require further testing.

Type
Review
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Mithila Jugulam, Kansas State University

References

Baerson, SR, Rodriguez, DJ, Tran, M, Feng, Y, Biest, NA, Dill, GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:12651275 CrossRefGoogle ScholarPubMed
Bradley, KW, Wu, J, Hatzios, KK, Hagood, ES Jr (2001) The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci 49:477484 CrossRefGoogle Scholar
Cha, TS, Najihah, MG, Sahid, IB, Chuah, TS (2014) Molecular basis for resistance to ACCase-inhibiting fluazifop in Eleusine indica from Malaysia. Pestic Biochem Physiol 111:713 CrossRefGoogle ScholarPubMed
Chen, J, Huang, H, Zhang, C, Wei, S, Huang, Z, Chen, J (2015) Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica). Planta 242:859868 CrossRefGoogle ScholarPubMed
Chen, JC, Jiang, C, Huang, H, Wei, S, Huang, Z, Wang, H, Zhao, D, Zhang, C (2017) Characterization of Eleusine indica with gene mutation or amplification in EPSPS to glyphosate. Pestic Biochem Physiol 143:201206 CrossRefGoogle ScholarPubMed
Correia, NM, Araújo, LS, Bueno Júnior, RA (2022) First report of multiple resistance of goosegrass to herbicides in Brazil. Adv Weed Sci 40:e020220007 CrossRefGoogle Scholar
Délye, C, Zhang, XQ, Michel, S, Matéjicek, A, Powles, SB (2005) Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol 137:794806 CrossRefGoogle ScholarPubMed
Deng, W, Yang, Q, Chen, Y, Yang, M, Xia, Z, Zhu, J, Chen, Y, Cai, J, Yuan, S (2020) Cyhalofop-butyl and glyphosate multiple herbicide resistance evolved in an Eleusine indica population collected in Chinese direct-seeding rice. J Agric Food Chem 68:26232630 CrossRefGoogle Scholar
Doyle, JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1115 Google Scholar
Duke, SO (2011) Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds. J Agric Food Chem 59:58355841 CrossRefGoogle ScholarPubMed
Gaines, TA, Duke, SO, Morran, S, Tranel, PJ, Küpper, A, Dayan, FE (2020) Mechanisms of evolved herbicide resistance. J Biol Chem 295:1030710330 CrossRefGoogle ScholarPubMed
Gaines, TA, Zhang, W, Wang, D, Bukun, B, Chisholm, ST, Shaner, DL, Nissen, SJ, Patzoldt, WL, Tranel, PJ, Culpepper, AS, Grey, TL, Webster, TM, Vencill, WK, Sammons, RD, Jiang, J, et al. (2009) Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc Natl Acad Sci USA 107:10291034 CrossRefGoogle ScholarPubMed
Gazola, T, Bianchi, L, Dias, MF, Carbonari, CA, Velini, ED (2020) Metabolic profiling of glyphosate-resistant sourgrass (Digitaria insularis). Weed Technol 34:748755 CrossRefGoogle Scholar
Ghanizadeh, H, Harrington, KC, James, TK, Woolley, DJ, Ellison, NW (2016) Restricted herbicide translocation was found in two glyphosate-resistant Italian ryegrass (Lolium multiflorum Lam.) populations from New Zealand. J Agric Sci Technol 18:10411051 Google Scholar
Gherekhloo, J, Fernández-Moreno, PT, Alcántara-de la Cruz, R, Sánchez-González, E, Cruz-Hipolito, HE, Domínguez-Valenzuela, JA, De Prado, R. (2017) Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Sci Rep 7:6702 CrossRefGoogle ScholarPubMed
Gomes, GLGC, Carbonari, CA, Velini, ED, Trindade, MLB, Silva, JRM (2015) Extraction and simultaneous determination of glyphosate, AMPA and compounds of the shikimic acid pathway in plants. Planta Daninha 33:295304 CrossRefGoogle Scholar
Heap, I (2022) The International Herbicide-Resistant Weed Database. www.weedscience.org. Accessed: July 13, 2022Google Scholar
Jalaludin, A, Yu, Q, Powles, SB (2014) Multiple resistance across glufosinate, glyphosate, paraquat and ACCase-inhibiting herbicides in an Eleusine indica population. Weed Res 55:8289 CrossRefGoogle Scholar
Kaundun, SS, Zelaya, IA, Dale, RP, Lycett, AJ, Carter, P, Sharples, KR, McIndoe, E (2008) Importance of the P106S target-site mutation in conferring resistance to glyphosate in a goosegrass (Eleusine indica) population from the Philippines. Weed Sci 56:637646 CrossRefGoogle Scholar
Laforest, M, Soufiane, B, Simard, MJ, Obeid, K, Page, E, Nurse, RE (2017) Acetyl-CoA carboxylase overexpression in herbicide resistant large crabgrass (Digitaria sanguinalis). Pest Manag Sci 73:22272235 CrossRefGoogle ScholarPubMed
Leach, GE, Devine, MD, Kirkwood, RC, Marshall, G (1995) Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica . Pestic Biochem Physiol 51:129136 CrossRefGoogle Scholar
Liu, W, Harrison, DK, Chalupska, D, Gornicki, P, O’Donnell, CC, Adkins, SW, Haselkorn, R, Williams, RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci USA 104:36273632 CrossRefGoogle ScholarPubMed
Livak, JK, Schmittgen, TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2^−ΔΔCt method. Methods 25:402408 CrossRefGoogle Scholar
Marshall, G, Kirkwood, RC, Leach, GE (1994) Comparative studies on graminicide-resistant and susceptible biotypes of Eleusine indica . Weed Res 34:177185 CrossRefGoogle Scholar
McCullough, PE, Yu, J, Raymer, PL, Chen, Z (2016) First report of ACCase-resistant goosegrass (Eleusine indica) in the United States. Weed Sci 64:399408 CrossRefGoogle Scholar
Molin, WT, Wright, AA, Nandula, VK (2013) Glyphosate-resistant goosegrass from Mississippi. Agronomy 3:474487 CrossRefGoogle Scholar
Mueller, TC, Barnett, KA, Brosnan, JT, Steckel, LE (2011) Glyphosate-resistant goosegrass (Eleusine indica) confirmed in Tennessee. Weed Sci 59:562566 CrossRefGoogle Scholar
Osuna, MD, Goulart, ICGR, Vidal, RA, Kalsing, A, Ruiz Santaella, JP, De Prado, R (2012) Resistance to ACCase inhibitors in Eleusine indica from Brazil involves a target site mutation. Planta Daninha 30:675681 CrossRefGoogle Scholar
Pan, L, Yu, Q, Han, H, Mao, L, Nyporko, A, Fan, L, Bai, L, Powles, S (2019) Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona . Plant Physiol 181:15191534 CrossRefGoogle ScholarPubMed
Pan, L, Yu, Q, Wang, J, Han, H, Mao, L, Nyporko, A, Maguza, A, Fan, L, Bai, L, Powles, S (2020) An ABCC-type transporter endowing glyphosate resistance in plants. Proc Natl Acad Sci USA 118:e2100136118 CrossRefGoogle Scholar
Pornprom, T, Mahatamnuchoke, P, Usui, K (2006) The role of altered acetyl-CoA carboxylase in conferring resistance to fenoxaprop-p-ethyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees). Pest Manag Sci 62:11091115 CrossRefGoogle ScholarPubMed
Powles, SB, Preston, C (2006) Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol 20:282289 CrossRefGoogle Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347 CrossRefGoogle ScholarPubMed
Sammons, DR, Gaines, TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:13671377 CrossRefGoogle ScholarPubMed
Takano, HK, Melo, MSC, Ovejero, RFL, Westra, PH, Gaines, TA, Dayan, FE (2020) Trp2027Cys mutation evolves in Digitaria insularis with cross-resistance to ACCase inhibitors. Pestic Biochem Physiol 164:16 CrossRefGoogle ScholarPubMed
Takano, HK, Mendes, RR, Scoz, LB, Lopez Ovejero, RF, Constantin, J, Gaines, TA, Westra, P, Dayan, FE, Oliveira RS Jr (2018) Proline-106 EPSPS mutation imparting glyphosate resistance in goosegrass (Eleusine indica) emerges in South America. Weed Sci 67:4856 CrossRefGoogle Scholar
Takano, HK, Oliveira, RS Jr, Constantin, J, Braz, GBP, Gheno, EA (2017) Goosegrass resistant to glyphosate in Brazil. Planta Daninha 35:e017163071 CrossRefGoogle Scholar
Tani, E, Chachalis, D, Travlos, IS (2015) A glyphosate resistance mechanism in Conyza canadensis involves synchronization of EPSPS and ABC-transporter genes. Plant Mol Biol Rep 33:17211730 CrossRefGoogle Scholar
Vázquez-García, JG, Alcántara-de la Cruz, R, Rojano-Delgado, AM, Palma-Bautista, C, Vasconcelos, JM de P, De Prado, R (2021) Multiple herbicide resistance evolution: the case of Eleusine indica in Brazil. J Agric Food Chem 69:11971205 CrossRefGoogle ScholarPubMed
Vidal, RA, Portes, ES, Lamego, FP, Trezzi, MM (2006) Resistência de Eleusine indica aos inibidores de ACCase. Planta Daninha 24:163171 CrossRefGoogle Scholar
Vila-Aiub, MM, Balbi, MC, Distéfano, AJ, Fernández, L, Hopp, E, Yu, Q, Powles, SB (2012) Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag Sci 68:430436 CrossRefGoogle ScholarPubMed
Wang, CS, Lin, WT, Chiang, YJ, Ching-Yuh Wang, CY (2017) Metabolism of fluazifop-P-butyl in resistant goosegrass (Eleusine indica) in Taiwan. Weed Sci 65:228238 CrossRefGoogle Scholar
Yu, Q, Jalaludin, A, Han, H, Chen, M, Sammons, RD, Powles, SB (2015) Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance. Plant Physiol 167:14401447 CrossRefGoogle ScholarPubMed
Yuan, JS, Abercrombie, LLG, Cao, Y, Halfhill, MD, Zhou, X, Peng, Y, Hu, J, Rao, MR, Heck, GR, Larosa, TJ, Sammons, RD, Wang, X, Ranjan, P, Johnson, DH, Wadl, PA, et al. (2010) Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target-site glyphosate resistance. Weed Sci 58:109117 CrossRefGoogle Scholar
Yuan, JS, Tranel, PJ, Stewart, CN Jr (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:613 CrossRefGoogle ScholarPubMed