Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-18T13:33:24.663Z Has data issue: false hasContentIssue false

Testing the universality of biology: a review

Published online by Cambridge University Press:  11 June 2007

J. Chela-Flores
Affiliation:
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11; 34014 Trieste, Italy Instituto de Estudios Avanzados, Apartado Postal 17606 Parque Central, Caracas 1015A, República Bolivariana de Venezuela e-mail: chelaf@ictp.it URL: http://www.ictp.it/~chelaf/index.html

Abstract

We discuss whether it is possible to test the universality of biology, a quest that is of paramount relevance for one of its most recent branches, namely astrobiology. We review this topic in terms of the relative roles played on the Earth biota by contingency and evolutionary convergence. Following the seminal contribution of Darwin, it is reasonable to assume that all forms of life known to us so far are not only terrestrial, but are descendants of a common ancestor that evolved on this planet at the end of a process of chemical evolution. We also raise the related question of whether the molecular events that were precursors to the origin of life on Earth are bound to occur elsewhere in the Universe, wherever the environmental conditions are similar to the terrestrial ones. We refer to ‘cosmic convergence’ as the possible occurrence elsewhere in the Universe of Earth-like environmental conditions. We argue that cosmic convergence is already suggested by observational data. The set of hypotheses for addressing the question of the universality of biology can be tested by future experiments that are feasible with current technology. We focus on landing on Europa and the broader implications of selecting the specific example of the right landing location. We have previously discussed the corresponding miniaturized equipment that is already in existence. The significance of these crucial points needs to be put into a wider scientific perspective, which is one of the main objectives of this review.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, G.O. (1982). Exploration of the Universe, 4th edn, ch. 33, pp. 536545. Saunders College Publishing, New York.Google Scholar
Akindahunsi, A.A. & Chela-Flores, J. (2004). On the question of convergent evolution in biochemistry. In Life in the Universe (Cellular Origin and Life in Extreme Habitats and Astrobiology, vol. 7), eds Seckbach, J., Chela-Flores, J., Owen, T. & Raulin, F., pp. 135138. Springer, Dordrecht.Google Scholar
Aretxaga, R. (2004). Astrobiology and biocentrism. In Life in the Universe (Cellular Origin and Life in Extreme Habitats and Astrobiology, vol. 7), eds Seckbach, J., Chela-Flores, J., Owen, T. & Raulin, F., pp. 345348. Springer, Dordrecht.Google Scholar
Austin, D.F. (1998). Parallel and convergent evolution in the Convolvulaceae. In Diversity and Taxonomy of Tropical Flowering Plants, eds Mathews, P. & Sivadasan, M., pp. 201234. Mentor Books, Calicut, India.Google Scholar
Bernstein, M.P., Dworkin, J.P., Sandford, S.A., Cooper, G.W. & Allamandola, L.J. (2002). Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401403.CrossRefGoogle ScholarPubMed
Bhattacherjee, A.B. & Chela-Flores, J. (2004). Search for bacterial waste as a possible signature of life on Europa. In Life in the Universe (Cellular Origin and Life in Extreme Habitats and Astrobiology, vol. 7), eds Seckbach, J., Chela-Flores, J., Owen, T. & Raulin, F., pp. 257260. Springer, Dordrecht. Available at: http://www.ictp.it/~chelaf/ss27.html.Google Scholar
Chela-Flores, J. (1998). A search for extraterrestrial eukaryotes: physical and biochemical aspects of exobiology. Origins Life Evol. Biosphere 28, 583596. Available at: http://www.ictp.it/~chelaf/searching_for_extraterr.html.CrossRefGoogle Scholar
Chela-Flores, J. (2000). Testing the Drake Equation in the solar system. In A New Era in Astronomy (ASP Conference Series, vol. 213), eds Lemarchand, G.A. & Meech, K., pp. 402410. ASP, San Francisco. Available at: http://www.ictp.trieste.it/~chelaf/TestingDrakeEq.html.Google Scholar
Chela-Flores, J. (2001). The New Science of Astrobiology from Genesis of the Living Cell to Evolution of Intelligent Behavior in the Universe, pp. 149156. Kluwer Academic, Dordrecht.Google Scholar
Chela-Flores, J. (2003). Testing evolutionary convergence on Europa, International Journal of Astrobiology 2 (4): 307312.CrossRefGoogle Scholar
Chela-Flores, J. (2006). The sulphur dilemma: are there biosignatures on Europa's icy and patchy surface? Int. J. Astrobiol. 5, 1722. Available at: http://www.ictp.it/~chelaf/ss64.html.CrossRefGoogle Scholar
Chela-Flores, J. (2007). Fitness of the cosmos for the origin and evolution of life: from biochemical fine-tuning to the Anthropic Principle. In Fitness of the Cosmos for Life: Biochemistry and Fine-tuning, eds Barrow, J.D., Conway Morris, S., Freeland, S.J. & Harper, C.L.Cambridge University Press, Cambridge (in press).Google Scholar
Chela-Flores, J., Chadha, M., Negron-Mendoza, A. & Oshima, T. (eds) (1995). Chemical Evolution: Self-Organization of the Macromolecules of Life, vol. 139. A. Deepak Publishing, Hampton, VA.Google Scholar
Chela-Flores, J., Lemarchand, G.A. & Oro, J. (2000). Astrobiology: Origins from the Big Bang to Civilisation. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Chela-Flores, J, Owen, T. & Raulin, F. (2001). The First Steps of Life in the Universe. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Chela-Flores, J. & Raulin, F. (eds) (1996). Chemical Evolution: Physics of the Origin and Evolution of Life (The Cyril Ponnamperuma Memorial Conference). Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Chela-Flores, J. & Raulin, F (eds) (1998). Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. Kluwer Academic, Dordrecht.Google Scholar
Conway-Morris, S. (1998). The Crucible of Creation. Oxford University Press, Oxford.Google Scholar
Conway-Morris, S. (2003). Life's Solution Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Cronin, J.R. & Chang, S. (1993). Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. In The Chemistry of Life's Origins, eds Greenberg, J.M., Mendoza-Gomez, C.X. & Pirronello, V., pp. 209258. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Dawkins, R. (1983). Universal Darwinism. In Evolution from Molecules to Men, ed. Bendall, D.S. pp. 403425. Cambridge University Press, London.Google Scholar
De Duve, C. (1995). Vital Dust. Life as a Cosmic Imperative. Basic Books, New York.Google Scholar
De Duve, C. (2002). Life Evolving Molecules Mind and Meaning. Oxford University Press, New York.CrossRefGoogle Scholar
De Duve, C. (2005). Singularities Landmarks on the Pathway of Life. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Delsemme, A.H. (2000). Cometary origin of the biosphere. Icarus 146, 313325.CrossRefGoogle Scholar
Doolittle, R.F. (1994). Convergent evolution: the need to be explicit. Trends Biochem. Sci. 19, 1518.CrossRefGoogle ScholarPubMed
Ehrenfreund, P., Glavin, D.P., Botta, O., Cooper, G. & Bada, J.L. (2001). Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites. Proc. Natl. Acad. Sci. USA 98, 21382141.CrossRefGoogle ScholarPubMed
Ekers, R.D., Cullers, K., Billingham, J. & Scheffer, L.K (eds) (2002). SETI 2020. SETI Press, Mountain View, CA.Google Scholar
Erwin, D.H. (2003). The Goldilocks Hypothesis. Science 302, 16821683.CrossRefGoogle Scholar
Fontana, W. & Buss, L.W. (1994). What would be conserved if “the tape were played twice”? Proc. Natl. Acad. Sci. USA 91, 757761.CrossRefGoogle Scholar
Foote, M. (1998). Contingency and convergence. Science 280, 20682069.CrossRefGoogle Scholar
Gazzaniga, M.S., Ivry, R.B. & Mangun, G.R. (1998). Evolutionary perspectives (written in collaboration with Leah Krubitzer). Cognitive Neuroscience. The Biology of the Mind, pp. 590593. W.W. Norton & Company, New York.Google Scholar
Gould, S.J. (1989). Wonderful Life: The Burgess Shale and the Nature of History. W.W. Norton and Company, New York.Google Scholar
Greenberg, J.M. & Mendoza-Gomez, C.X. (1993). Interstellar dust evolution: a reservoir of prebiotic molecules. In The Chemistry of Life's Origins, eds Greenberg, J.M., Mendoza-Gomez, C.X. & Pirronello, V., pp. 132. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Hoppe, P., Strebel, R., Eberhadt, P., Amari, S. & Lewis, R.S. (1997). Type II supernova matter in a silicon carbide grain from the Murchison meteorite. Science 272, 13141317.CrossRefGoogle Scholar
Kerr, R.A. (2002). Winking star unveils planetary birthplace. Science 296, 23122313.CrossRefGoogle ScholarPubMed
Knoll, A.H. (1995). Life story. Nature 375, 201202.CrossRefGoogle Scholar
Kornegay, J. (1996). Molecular genetics and evolution of stomach and nonstomachlysozymes in the hoatzin. J. Mol. Evol. 42, 676684.CrossRefGoogle ScholarPubMed
Krubitzer, L. (1995). The organization of neocortex in mammals: are species differences really so different? Trends Neurosci. 18, 408417.CrossRefGoogle ScholarPubMed
Krubitzer, L. & Kahn, D.M. (2003). Nature versus nurture revisited: an old idea with a new twist. Prog. Neurobiol. 70, 3352.CrossRefGoogle ScholarPubMed
Kvenvolden, K.A., Lawless, J.G. & Ponnamperuma, C. (1971). Nonprotein amino acids in the Murchison meteorite. Proc. Natl. Acad. Sci. USA 68(2), 486490.CrossRefGoogle ScholarPubMed
Manger, P., Sum, M., Szymanski, M., Ridgway, S. & Krubitzer, L. (1998). Modular subdivisions of dolphin insular cortex: does evolutionary history repeat itself? J. Cognitive Neurosci. 10, 153166.CrossRefGoogle Scholar
McCord, T.B. et al. & The NIMS Team (1998). Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103(E4), 86038626.CrossRefGoogle Scholar
Monod, J. (1971). Chance and Necessity: an Essay on the Natural Philosophy of Modern Biology. Alfred A. Knopf, New York.Google Scholar
Muñoz Caro, G.M., Meierhenrich, U.J., Schutte, W.A., Barbier, B., Arcones Segovia, A., Rosenbauer, H., Thiemann, W.H.-P., Brack, A. & Greenberg, J.M. (2002). Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416, 403406.CrossRefGoogle ScholarPubMed
Nishikawa, K.C. (2002). Evolutionary convergence in nervous systems: insights from comparative phylogenetic studies. Brain Behav. Evol. 59, 240249.CrossRefGoogle ScholarPubMed
Pace, N.R. (2001). The universal nature of biochemistry. Proc. Natl. Acad. Sci. USA 98, 805808.CrossRefGoogle ScholarPubMed
Penny, D. (2006). Defining moments. Nature 442, 745746.CrossRefGoogle Scholar
Ponnamperuma, C. & Chela-Flores, J (eds) (1993). Chemical Evolution: Origin of Life, vol. 135. A. Deepak Publishing, Hampton, VA.Google Scholar
Ponnamperuma, C. & Chela-Flores, J (eds) (1995). Chemical Evolution: The Structure and Model of the First Cell. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Schneider, G. et al. (1999). NICMOS imaging of the HR 4796A circumstellar disk. Astrophys. J. 513, L12171230.CrossRefGoogle Scholar
Seckbach, J., Chela-Flores, J., Owen, T. & Raulin, F (eds) (2004). Life in the Universe from the Miller Experiment to the Search for Life on Other Worlds (Proceedings of the Trieste Conference in Honour of the 50th Anniversary of the Stanley Miller Experiment). Kluwer Academic, Dordrecht.Google Scholar
Singer, E. (2003). Vital clues from Europa. New Scientist 2414(27 September), 23. Available at: http://www.newscientist.com/contents/issue/2414.html (option ‘Vital clues from Europa’).Google Scholar
Szathmary, E. (2002). The gospel of inevitability. Was the universe destined to lead to the evolution of humans? Nature 419, 779780.Google Scholar
Thomson, R.E. & Delaney, J.R. (2001). Evidence for a weakly stratified Europan ocean sustained by seafloor heat flux. J. Geophys. Res. 106(E6), 12 35512 365.CrossRefGoogle Scholar
Tramontano, A. (2002). Private communication.Google Scholar
Villegas, R. (2007). Private communication.Google Scholar
Villegas, R, Castillo, C. & Villegas, G.M. (2000). The origin of the neuron: the first neuron in the phylogenetic tree of life. In Astrobiology from the Big Bang to Civilisation, ed. Chela-Flores, J., Lemarchand, G.A. & Oro, J., pp. 195211. Kluwer Academic, Dordrecht.Google Scholar
Weinreich, D.M., Delaney, N.F., DePristo, M.A. & Hartl, D.L. (2006). Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111113.CrossRefGoogle ScholarPubMed
Zhang, J. & Kumar, S. (1997). Detection of convergent and parallel evolution at the amino acid sequence level. Mol. Biol. Evol. 14, 527536.CrossRefGoogle ScholarPubMed
Ziegler, B. (1983). Introduction to Palaeobiology: General Palaeontology. Ellis Horwood Limited, Chichester, UK.Google Scholar