Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-03T12:41:10.970Z Has data issue: false hasContentIssue false

The Pleistocene ice-sheet dynamics in north-central Poland based on magnetic fabrics of tills and landform analysis

Published online by Cambridge University Press:  26 February 2024

Artur Teodorski*
Affiliation:
Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland

Abstract

This research was carried out in north-central Poland, which was occupied by the ice sheet of the Saalian (Marine Isotope Stage [MIS] 6) and Upper Stadial of the Weichselian (MIS 2) glaciation. The application of the anisotropy of magnetic susceptibility (AMS) method supported by a digital elevation model (DEM) analysis of the orientation of glacial landforms allowed for the reconstruction of ice-sheet extent and ice movement directions of these two Pleistocene glaciations. The research used an innovative method of collecting AMS till samples from the glacial plateau areas. Based on the research, it was found that during the general recession of the ice sheet of the Saalian glaciation, a previously undescribed glacial transgression occurred, characterized by a different direction of ice-sheet movement. On the basis of detailed geomorphological studies of the area of terminal moraines, previously described in fragments, the maximum extent of the ice sheet during the Weichselian glaciation was clarified. The recession of the ice sheet of the Weichselian glaciation from the area of north-central Poland took place in four regressive or transgressive–regressive stages with variable directions of ice-sheet movement. The results obtained indicate the great potential of the AMS method in paleoenvironmental studies of glaciated areas.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankerstjerne, S., Iverson, N.R., Lagroix, F., 2015. Origin of a washboard moraine of the Des Moines Lobe inferred from sediment properties. Geomorphology 248, 452463.CrossRefGoogle Scholar
Baraniecka, M.D., 1996. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Raciąż. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Benn, D., 1994. Fabric shape and the interpretation of sedimentary fabric data. Journal of Sedimentary Research 64(4a), 910915.Google Scholar
Cifelli, F., Mattei, M., Chadima, M., Hirt, A.M., Hansen, A., 2005. The origin of tectonic lineation in extensional basins: combined neutron texture and magnetic analyses on undeformed clays. Earth and Planetary Science Letters 235, 6278.CrossRefGoogle Scholar
Cifelli, F., Mattei, M., Chadima, M., Lenser, S., Hirt, A.M., 2009. The magnetic fabric in undeformed clays: AMS and neutron texture analyses from the Rif Chain (Morocco). Tectonophysics 466, 7988.CrossRefGoogle Scholar
Clark, C.D., 1997. Reconstructing the evolutionary dynamics of former ice sheets using multi-temporal evidence, remote sensing and GIS. Quaternary Science Reviews 16, 10671092.CrossRefGoogle Scholar
Cline, M.D., Iverson, N.R., Harding, C., 2015. Origin of washboard moraines of the Des Moines Lobe: spatial analyses with LiDAR data. Geomorphology 246, 570578.CrossRefGoogle Scholar
Dzierżek, J., 2006. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Lipno. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Dzierżek, J., 2009. Palaeogeography of selected areas of Poland during the Last Glaciation. Acta Geographica Lodziensia, 95, 1112.Google Scholar
Dzierżek, J., Szymanek, M., 2009. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Skępe. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Ewertowski, M., Rzeszewski, M., 2006. Using DEM to recognize possible minor stays of Vistulian (Weichselian) ice-sheet margin in the Wielkopolska Lowland. Quaestiones Geographicae 25A, 721.Google Scholar
Fleming, E.J., Stevenson, C.T.E., Petronis, M.S., 2013. New insights into the deformation of a Middle Pleistocene glaciotectonised sequence in Norfolk, England through magnetic and structural analysis. Proceedings of the Geologists’ Association 124, 834854.CrossRefGoogle Scholar
Frankiewicz, A., 2009. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Drobin. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Frankiewicz, A., 2013. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Mochowo. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Fuller, M.D., 1962. A magnetic fabric in till. Geological Magazine 99, 233237.CrossRefGoogle Scholar
Gentoso, M.J., Evenson, E.B., Kodama, K.P., Iverson, N.R., Alley, R.B., Berti, C., Kozlowski, A., 2012. Exploring till bed kinematics using AMS magnetic fabrics and pebble fabrics: the Weedsport Drumlin Field, New York State, USA. Boreas 41, 3141.CrossRefGoogle Scholar
Grabowski, J., Bakhmutov, V., Kdýr, Š., Krobicki, M., Pruner, P., Rehákowá, D., Schnabl, P., Stoykova, K., Wierzbowski, H., 2019. Integrated stratigraphy and palaeoenvironmental interpretation of the Upper Kimmeridgian to Lower Berriasian pelagic sequences of the Velykyi Kamianets (Pieniny Klippen Belt, Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology 532, 109216.CrossRefGoogle Scholar
Hodge, V.J., Austin, J., 2004. A survey of outlier detection methodologies. Artificial Intelligence Review 22, 85126.CrossRefGoogle Scholar
Hooyer, T.S., Iverson, N.R., Lagroix, F., Thomason, F., 2008. Magnetic fabric of sheared till: a strain indicator for evaluating the bed deformation model of glacier flow. Journal of Geophysical Research 113, F02002.CrossRefGoogle Scholar
Hopkins, N.R., Kleman, J., Evenson, E.B., Kodama, K.P., 2016. An anisotropy of magnetic susceptibility (AMS) fabric record of till kinematics within a Late Weichselian low Baltic till, southern Sweden. Boreas 45, 846860.CrossRefGoogle Scholar
Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5, 3782.CrossRefGoogle Scholar
Hrouda, F., 2007. Magnetic susceptibility, anisotropy. In: Gubbins, D., Herrero-Bervera, E. (Eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht, Netherlands, pp. 546560.CrossRefGoogle Scholar
Ives, L.R.W., Iverson, N.R., 2019. Genesis of glacial flutes inferred from observations at Múlajökull, Iceland. Geology 47, 387390.CrossRefGoogle Scholar
Jackson, M., 1991. Anisotropy of magnetic remanence: a brief review of mineralogical sources, physicals origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics 136, 128.CrossRefGoogle Scholar
Jelínek, V., 1978. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica 22(1), 5062.CrossRefGoogle Scholar
Jorgensen, F., Piotrowski, J.A., 2003. Signature of the Baltic Ice Stream on Funen Island, Denmark during the Weichselian glaciation. Boreas 32, 242255.CrossRefGoogle Scholar
Kacprzak, L., Lisicki, S., 2005. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Bulkowo. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Kacprzak, L., Lisicki, S., 2011. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50,000, arkusz Bulkowo. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
King, E.C., Pritchard, H.D., Smith, A.M., 2016. Subglacial landforms beneath Rutford Ice Stream, Antarctica: detailed bed topography from ice-penetrating radar. Earth System Science Data 8, 151158.CrossRefGoogle Scholar
Kodama, K.P., 1982. Magnetic effects of maghemitization of Plio-Pleistocene marine sediments, northern California. Journal of Geophysical Research 87, 71137125.CrossRefGoogle Scholar
Kotarbiński, J., 1998. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Sierpc. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Kozarski, S., 1995. Deglaciation of northwestern Poland: environmental conditions and geosystem transformation ( ̴ 20 ka–10 ka BP). Dokumentacja Geograficzna 1, 182.Google Scholar
Król, E., Wachecka-Kotkowska, L., 2015. Anisotropy of magnetic susceptibility as a potential tool of palaeocurrent direction of the glacial sediments in the Piotrków Trybunalski, Radomsko and Przedbórz area (Central Poland). Acta Geographica Lodziensia 103, 7998.Google Scholar
Krupiński, K.M., 2005. The investigations of the Younger Pleistocene lacustrine sediments of the Płock Upland. Prace Państwowego Instytutu Geologicznego 148, 158.Google Scholar
Kucharska, M., Wasiluk, R., 2005. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Wyszogród. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Lamparski, Z., 1978. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Mochowo. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Lamparski, Z., 1980. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Tłuchowo. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Lamparski, Z., 1985. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Fabianki. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Lamparski, Z., 1991. Loby lodowcowe w kopalnej i obecnej rzeźbie Pojezierza Dobrzyńskiego. In: Kostrzewski, A. (Ed.), Geneza, litologia i stratygrafia osadów czwartorzędowych. Wydawnictwa UAM, seria Geografia, Poznań, pp. 105115.Google Scholar
Lamparski, Z., 2001. Zarys budowy geologicznej i charakterystyka rzeźby Wysoczyzny Płockiej i Pojezierza Dobrzyńskiego ze szczególnym uwzględnieniem budowy i genezy drumlinów oraz moren czołowych. In: Dzierżek, J. (Ed.), Rzeźba i osady czwartorzędu środkowo-wschodniej Polski. Przewodnik do ćwiczeń z geomorfologii i geologii czwartorzędu. Uniwersytet Warszawski, Wydział Geologii, Warsaw, pp. 5458.Google Scholar
Lesemann, J.E., Piotrowski, J.A., Wysota, W., 2014. Genesis of the “glacial curvilineation” landscape by meltwater processes under the former Scandinavian Ice Sheet, Poland. Sedimentary Geology 312, 118.CrossRefGoogle Scholar
Lisicki, S., 2003. Lithotypes and lithostratigraphy of tills of the Pleistocene in the Vistula drainage basin area Poland. Prace Państwowego Instytutu Geologicznego 177, 1105.Google Scholar
Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159162.CrossRefGoogle Scholar
Łyczewska, J., 1973. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Ciechocinek. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Marks, L., 1988. Relation of substrate to the Quaternary palaeorelief and sediments, western Mazury and Warmia. Kwartalnik AGH, Geologia 14, 76s.Google Scholar
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 8188.CrossRefGoogle Scholar
Marks, L. (Ed.), 2022. Mapa geologiczna Polski w skali 1:500 000. Mapa powierzchni terenu. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Marks, L., Bitinas, A., Błaszkiewicz, M., Börner, A., Guobyte, R., Rinterknecht, V., Tylmann, K., 2022. Northern central Europe: glacial landforms from the Last Glacial Maximum. In: Palacios, D., Hughes, P.D., García-Ruiz, J.M., Andrés, N. (Eds.), European Glacial Landscapes. Maximum Extent of Glaciation. Elsevier, Amsterdam, pp. 381388.CrossRefGoogle Scholar
Marks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A., Woronko, B., 2016. Quaternary stratigraphy and palaeogeography of Poland. Acta Geologica Polonica 66, 403427.CrossRefGoogle Scholar
Marks, L., Karabanov, A., Nitychoruk, J., Bahdasarau, M., Krzywicki, T., Majecka, A., Pochocka-Szwarc, K., et al., 2018. Revised limit of the Saalian ice sheet in central Europe. Quaternary International 478, 5974.CrossRefGoogle Scholar
McCracken, R.G., Iverson, N.R., Benediktsson, Í.Ö., Schomacker, A., Zoet, L.K., Johnson, M. D., Hooyer, T.S., Ingólfsson, Ó., 2016. Origin of the active drumlin field at Múlajökull, Iceland: new insights from till shear and consolidation patterns. Quaternary Science Reviews 148, 243260.CrossRefGoogle Scholar
Mojski, E., 1958. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Włocławek. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Mojski, J.E., 2005. Ziemie Polskie w czwartorzędzie—zarys morfogenezy. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Morawski, W., 2009. Reconstruction of the Vistula ice stream during the Last Glacial Maximum in Poland. Geological Quarterly 53, 305316.Google Scholar
Mycielska-Dowgiałło, E., Rutkowski, J., 1995. Researches of Quaternary Sediments. Some Methods and Interpretation of the Results. Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Komitet Badań Czwartorzędu Polskiej Akademii Nauk, Warsaw.Google Scholar
Narloch, W., Werner, W., Tylmann, K., 2021. Deformation mechanisms and kinematics of a soft sedimentary bed beneath the Scandinavian Ice Sheet, north-central Poland, revealed by magnetic fabrics. Sedimentary Geology 416, 105862.CrossRefGoogle Scholar
Nechay, W., 1927. Utwory lodowcowe Ziemi Dobrzyńskiej. Sprawozdania Państwowego Instytutu Geologicznego 4, 176.Google Scholar
Newton, A.M.W., Huuse, M., 2017. Glacial geomorphology of the central Barents Sea: implications for the dynamic deglaciation of the Barents Sea Ice Sheet. Marine Geology 387, 114131.CrossRefGoogle Scholar
Niewiarowski, W., Olszewski, A., Wysota, W., 1995. The role of subglacial features in glacial morphogenesis of Kujawy-Dobrzyń subphase area in the southern and eastern part of the Chełmno-Dobrzyń Lakeland. Quaternary Studies in Poland 13, 6576.Google Scholar
Opdyke, N.D., Channell, J.E.T., 1996. Magnetic Stratigraphy. Academic Press, San Diego.Google Scholar
Parés, J.M., 2015. Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rock. Frontiers in Earth Science 3, 112.Google Scholar
Parés, J.M., van der Pluijm, B.A., 2002. Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics 350, 283298.CrossRefGoogle Scholar
Raunholm, S., Sejrup, H.P., Larsen, E., 2003. Lateglacial landform associations at Jaren (SW Norway) and their glaci-dynamic implications. Boreas 32, 462475.Google Scholar
Roman, M., 2010. Reconstruction of the Płock ice-lobe during the Last Glaciation. Acta Geographica Lodziensia 96, 1171.Google Scholar
Roman, M., 2019. Ice-flow directions of the last Scandinavian Ice Sheet in central Poland. Quaternary International 501, 420.CrossRefGoogle Scholar
Różański, P., Włodek, M., 2009. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Staroźreby. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Różański, P., Włodek, M., 2012. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50,000, arkusz Staroźreby. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Rühle, E., 1957. Mapa utworów czwartorzędowych Polski w skali 1:2 000 000. Biuletyn Instytutu Geologicznego 118, 489550.Google Scholar
Rychel, J., Morawski, M., 2017. Postglacial morpholineaments as an indicator of ice sheet dynamics during the Saale Glaciation in the Białystok Plateau and Sokółka Hills (NE Poland). Geological Quarterly 61, 334349.Google Scholar
Shumway, J.R., Iverson, N.R., 2009. Magnetic fabrics of the Douglas Till of the Superior lobe: exploring bed-deformation kinematics. Quaternary Science Reviews 28, 107119.CrossRefGoogle Scholar
Skompski, S., 1968. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Dobrzyń. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Skompski, S., 1969. Stratygrafia osadów czwartorzędowych wschodniej części Kotliny Płockiej. Biuletyn Instytutu Geologicznego 220, 175258.Google Scholar
Skompski, S., Słowański, W., 1962. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Płock. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., et al., 2018. Physico-geographical mesoregions of Poland: verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91, 143170.CrossRefGoogle Scholar
Stachowska, A., Łoziński, M., Śmigielski, M., Wysocka, A., Jankowski, L., Ziółkowski, P., 2020. Anisotropy of magnetic susceptibility as an indicator for palaeocurrent analysis in folded turbidites (Outer Western Carpathians, Poland). Sedimentology 67, 37833808.CrossRefGoogle Scholar
Stewart, R.A., Bryant, D., Sweat, M.J., 1988. Nature and origin of corrugated ground moraine of the Des Moines Lobe, Story County, Iowa. Geomorphology 1, 111130.CrossRefGoogle Scholar
Stober, J.C., Thompson, R., 1979. An investigation into the source of magnetic minerals in some Finnish lake sediments. Earth and Planetary Science Letters 45, 464474.CrossRefGoogle Scholar
Stokes, C.R., Tarasov, L., Blomdin, R., Cronin, T.M., Fisher, T.G., Gyllencreutz, R., Hättestrand, C., et al., 2015. On the reconstruction of palaeo-ice sheets: recent advances and future challenges. Quaternary Science Reviews 125, 1549.CrossRefGoogle Scholar
Stupavsky, M., Gravenor, C.P., 1975. Magnetic fabric around boulders in till. Geological Society of America Bulletin 86, 15341536.2.0.CO;2>CrossRefGoogle Scholar
Teodorski, A., 2023. Palaeogeographic reconstruction of the Late Weichselian ice sheet in north-central Poland based on relief analysis. Journal of Quaternary Science 38, 647657.CrossRefGoogle Scholar
Teodorski, A., Dzierżek, J., Ziółkowski, P., 2021. Reconstruction of subglacial depositional conditions based on the anisotropy of magnetic susceptibility: an example from Dębe (central Poland). Journal of Quaternary Science 36, 391402.CrossRefGoogle Scholar
Thomason, J.F., Iverson, N.R., 2009. Deformation of the Batestown till of the Lake Michigan lobe, Laurentide ice sheet. Journal of Glaciology 55, 131146.CrossRefGoogle Scholar
Tylmann, K., Rinterknecht, V.R., Woźniak, P.P., Bourlès, D., Schimmelpfennig, I., Guillou, V., ASTER Team, 2019. The Local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: cosmogenic nuclide dating of erratics in northern Poland. Quaternary Science Reviews 219, 3646.CrossRefGoogle Scholar
Tylmann, K., Wysota, W., Piotrowski, J.A., 2013. Zastosowanie pomiarów anizotropii podatności magnetycznej (AMS) w badaniach glin subglacjalnych. In: XX Konferencja Stratygrafia Plejstocenu Polski. Lasocin, Poland.Google Scholar
Woodcock, N.H., 1977. Specification of fabric shapes using an eigenvalue method. GSA Bulletin 88, 12311236.2.0.CO;2>CrossRefGoogle Scholar
Wysota, W., 2006. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Golub-Dobrzyń. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Wysota, W., Lankauf, K.R., Szmańda, J., Chruścińska, A., Oczkowski, H.L., Przegiętka, K.R., 2002. Chronology of the Vistulian (Weichselian) glacial events in the Lower Vistula region, middle-north Poland. Geochronometria 21, 137142.Google Scholar
Wysota, W., Sokołowski, R., 2009. Szczegółowa Mapa Geologiczna Polski w skali 1:50,000, arkusz Rypin. Państwowy Instytut Geologiczny, Warsaw.Google Scholar