Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T12:38:11.286Z Has data issue: false hasContentIssue false

Climate variability in the northern Levant from the highly resolved Qadisha record (Lebanon) during the Holocene optimum

Published online by Cambridge University Press:  03 July 2023

Carole Nehme*
Affiliation:
UMR IDEES 6266 CNRS, Université de Rouen-Normandie, Mont-Saint-Aignan, 76130 France
Sophie Verheyden
Affiliation:
Department of Earth History of Life, Royal Institute of Natural Sciences (RBINS), Brussels, Belgium
Tobias Kluge
Affiliation:
Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
Fadi H. Nader
Affiliation:
IFP Énergies nouvelles, Direction des Sciences de la Terre et Technologies de l'Environnement, Rueil-Malmaison, 92500, France
R. Lawrence Edwards
Affiliation:
Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
Hai Cheng
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Elisabeth Eiche
Affiliation:
Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
Philippe Claeys
Affiliation:
Analytical Environmental & Geo-Chemistry, Faculty of Science, Vrije Universiteit Brussel, Brussels, 1050, Belgium
*
*Corresponding author: Carole Nehme; Email: carole.nehme@univ-rouen.fr

Abstract

New stalagmites from Qadisha Cave (Lebanon) located at 1720 m above sea level provide a high-resolution and well-dated record for northern Mount Lebanon. The stalagmites grew discontinuously from 9.2 to 5.7 and at 3.5 ka, and they show a tendency to move from a more negative oxygen isotope signal at ~9.1 ka to a more positive signal at ~5.8 ka. Such a trend reflects a change from a wetter to a drier climate at high altitudes. The δ13C signal shows rapid shifts throughout the record and a decreasing trend toward more negative values in the mid-Holocene, suggesting enhanced soil activity. In the short-term trend, Qadisha stalagmites record rapid dry/wet changes on centennial scales, with a tendency to more rapid dry events toward the mid-Holocene. Such changes are characterized by overall good agreement between both geochemical proxies and stalagmite growth and might be affected by the seasonal variations in snow cover. The Qadisha record is in good agreement with other Levantine records, showing more humid conditions from 9 to 7 ka. After 7 ka, a drier climate seems to affect sites at both low- and high-altitude areas. The Qadisha record reflects uniquely mountainous climate characteristics compared with other records, specifically the effect of snow cover and its duration regulating the effective infiltration.

Type
Thematic Set: Speleothem Paleoclimate
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Affolter, S., Fleitmann, D., Leuenberger, M., 2014. New-on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS). Climate of the Past 10, 1291e1304.Google Scholar
Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., Ayalon, A., Matthews, A., 2009. Climatic variability during the last ~90 ka of the S. and N. Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews 28, 28822896.Google Scholar
Alpert, P., Price, C., Krichak, S.O., Ziv, B., Saaroni, H., Osetinsky, I., Kishcha, P., 2005. Tropical teleconnections to the Mediterranean climate and weather. Advances in Geosciences 2, 157160.Google Scholar
Aouad-Rizk, A., Job, J.O., Khalil, S., Touma, T., Bitar, C., Bocquillon, C., Najem, W., 2005. δ18O and δ2H contents over Mt. Lebanon related to mass trajectories and local parameters. In: Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate. IAEA-TECDOC 1453. Vienna: International Atomic Energy Agency, pp. 7582.Google Scholar
Ayalon, A., Bar-Matthews, M., Frumkin, A., Matthews, A., 2013. Last glacial warm events on Mt. Hermon: the southern extension of the Alpine karst range in the east Mediterranean. Quaternary Science Reviews 59, 4356.Google Scholar
Ayalon, A., Bar-Matthews, M., Kaufman, A., 1999. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel. Holocene 9, 715722.Google Scholar
Ayalon, A., Bar-Matthews, M., Sass, E., 1998. Rainfall-recharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid region, Israel: δ18O and δ2H characteristics. Journal of Hydrology 207, 1831.Google Scholar
Ayalon, A., Bar-Matthews, M., Schilman, B., 2004. Rainfall Isotopic Characteristics in Various Sites in Israel and the Relationships with the Unsaturated Zone Water. Israel Geological Survey Report GSI/16/04. Geological Survey of Israel, Jerusalem.Google Scholar
Baker, A., Mariethoz, G., Comas-Bru, L., Hartmann, A., Frisia, S., Borsato, A., Asrat, A., 2021. The properties of annually laminated stalagmites—a global synthesis. Reviews of Geophysics 59(2), e2020RG000722.Google Scholar
Bar-Matthews, M., Ayalon, A., 2011. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 21, 163171.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, M., Hawkesworth, C., 2003. Sea-land isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implications for paleorainfall during interglacial interval, Geochimica et Cosmochimica Acta 67, 31813199.Google Scholar
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., Halicz, L., 1996. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semi-arid regions. Geochimica et Cosmochimica Acta 60, 337347.Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A.J., Poli, P., 2011. Atmospheric conservation properties in ERA-Interim. Quarterly Journal of the Royal Meteorological Society 137, 13811399.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Borsato, A., Frisia, S., Fairchild, I.J., Somogyi, A., Susini, J., 2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: implications for incorporation of environmentally significant species. Geochimica et Cosmochimica Acta 71, 14941512.Google Scholar
Brayshaw, D.J., Rambeau, C.M., Smith, S.J., 2011. Changes in Mediterranean climate during the Holocene: insights from global and regional climate modelling. Holocene 21, 1531.Google Scholar
Burstyn, Y., Martrat, B., Lopez, J.F., Iriarte, E., Jacobson, M.J., Lone, M.A., Deininger, M., 2019. Speleothems from the Middle East: an example of water limited environments in the SISAL database. Quaternary 2, 16.Google Scholar
Burstyn, Y., Shaar, R., Keinan, J., Ebert, Y., Ayalon, A., Bar-Matthews, M., Feinberg, J.M., 2022. Holocene wet episodes recorded by magnetic minerals in stalagmites from Soreq Cave, Israel. Geology 50, 284288.Google Scholar
Carolin, S.A., Walker, R.T., Day, C.C., Ersek, V., Sloan, R.A., Dee, M.W., Talebian, M., Henderson, G.M., 2019. Precise timing of abrupt increase in dust activity in the EM coincident with 4.2ka social change. Proceedings of the National Academy of Sciences USA 116, 6772.Google Scholar
Cheddadi, R., Khater, C., 2016. Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species. Quaternary Science Reviews 150, 146157.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., et al., 2013. Improvements in 230 Th dating, 230 Th and 234 U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371, 8291.Google Scholar
Cheng, H., Sinha, A., Verheyden, S., Nader, F.H., Li, X.L., Zhang, P.Z., Yin, J.J., et al., 2015. The climate variability in northern Levant over the past 20,000 years. Geophysical Research Letters 42, 86418650.Google Scholar
Cheng, H., Zhang, P.Z., Spötl, C., Edwards, R.L., Cai, Y.J., Zhang, D.Z., Sang, W.C., Tan, M., An, Z.S., 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 39, L01705.Google Scholar
Clark, I. D., Fritz, P. 1997. Environmental Isotopes in Hydrogeology. CRC Press, Boca Raton, FL.Google Scholar
Daëron, M., Drysdale, R.N., Peral, M., Huyghe, D., Blamart, D., Coplen, T.B., Zanchetta, G., 2019. Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications 10, 17.Google Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.Google Scholar
Demeny, A., Kele, S., Siklosy, Z., 2010. Empirical equations for the temperature dependence of calcite-water oxygen isotope fractionation from 10 to 70° C. Rapid Communications in Mass Spectrometry 24, 35213526.Google Scholar
Develle, A.L., Herreros, J., Vidal, L., Sursock, A. Gasse, F., 2010. Controlling factors on a paleo-lake oxygen isotope record (Yammoûneh, Lebanon) since the Last Glacial Maximum. Quaternary Science Reviews 29, 865886.Google Scholar
Dubertret, L., 1975. Introduction à la carte géologique au 50.000e du Liban. Notes et Mémoires sur le Moyen-Orient 23, 345403.Google Scholar
Edgell, H.S., 1997. Karst and hydrogeology of Lebanon. Carbonates Evaporites 12, 220235.Google Scholar
Edwards, R.L., Chen, J.H., Ku, T.L., Wasserburg, G.J., 1987. Precise timing of the last interglacial period from mass spectrometric determination of 230Th in corals. Science 236, 15471553.Google Scholar
Emeis, K.C., Schulz, H., Struck, U., Rossignol-Strick, M., Erlenkeuser, H., Howell, M.W., Kroon, D., et al., 2003. Eastern Mediterranean surface water temperatures and 18O during deposition of sapropels in the late Quaternary. Paleoceanography 18, 10051029.Google Scholar
Erkan, G., Bayari, C.S., Fleitmann, D., Cheng, H., Edwards, L., Özbakir, M., 2022. Late Pleistocene–Holocene climatic implications of high-resolution stable isotope profiles of a speleothem from S. Central Anatolia, Turkey. Journal of Quaternary Science 37, 503515.Google Scholar
Fairchild, I.J., Baker, A., 2012. Speleothem Science—From Process to Past Environments. Blackwell Quaternary Geoscience Series. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.Google Scholar
Fairchild, I.J., Treble, P.C., 2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28, 449468.Google Scholar
Fayad, A., Gascoin, S., 2020. The role of liquid water percolation representation in estimating snow water equivalent in a Mediterranean mountain region (Mt. Lebanon). Hydrology and Earth System Sciences 24, 15271542.Google Scholar
Finné, M., Holmgren, K., Sundqvist, H.S., Weiberg, E., Lindblom, M., 2011. Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years—a review. Journal of Archaeological Science 38, 31533173.Google Scholar
Flohr, P., Fleitmann, D., Zorita, E., Sadekov, A., Cheng, H., Bosomworth, M., Edwards, R.L., Matthews, W., Matthews, R., 2017. Late Holocene droughts in the Fertile Crescent recorded in a speleothem from N. Iraq. Geophysical Research Letters 44, 15281536.Google Scholar
Fohlmeister, J., Voarintsoa, N. R. G., Lechleitner, F. A., Boyd, M., Brandtstätter, S., Jacobson, M. J., Oster, J.L., 2020. Main controls on the stable carbon isotope composition of speleothems. Geochimica et Cosmochimica Acta, 279, 6787.Google Scholar
Frumkin, A., Ford, D.C., Schwarcz, H., 2000. Paleoclimate and vegetation of the Last Glacial cycles in Jerusalem from a speleothem record. Global Biogeochemical Cycles 14, 863870.Google Scholar
Gasse, F., Vidal, L., Van Campo, E., Demory, F., Develle, A.-L., Tachikawa, K., Elias, A., et al., 2015. Hydroclimatic changes in northern Levant over the past 400.000 years, Quaternary Science Reviews 111, 18.Google Scholar
Gat, J.R., Klein, B., Kushnir, Y., Roether, W., Wernli, H., Yam, R., Shemesh, A., 2003. Isotope composition of air moisture over the Mediterranean Sea: an index of the air–sea interaction pattern. Tellus, series B 55, 953965.Google Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., Hamelin, B., 2001a. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65, 34433457.Google Scholar
Genty, D., Baker, A., Vokal, B., 2001b. Intra- and inter-annual growth rate of modern stalagmites. Chemical Geology 176(1–4), 191212.Google Scholar
Genty, D., Blamart, D., Ouahdi, R. Gilmour, M., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Grant, K.M., Grimm, R., Mikolajewicz, U., Marino, G., Ziegler, M., Rohling, E.J., 2016. The timing of Mediterranean sapropel deposition relative to insolation, sea- level and African monsoon changes. Quaternary Science Reviews 140, 125e141.Google Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., Satow, C., Roberts, A.P., 2012. Rapid coupling between ice volume and polar temperature over the past 150 ka. Nature 491, 744747.Google Scholar
Hajjar, L., Haïdar-Boustani, M., Khater, C., Cheddadi, R., 2010. Environmental changes in Lebanon during the Holocene: man vs. climate impacts. Journal of Arid Environments 74, 746755.Google Scholar
Hellstrom, J.C., McCulloch, M.T., 2000. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth and Planetary Science Letters 179, 287297.Google Scholar
Huang, H.M., Fairchild, I.J., Borsato, A., Frisia, S., Cassidy, N.J., McDermott, F., Hawkesworth, C.J., 2001. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology 175, 429448.Google Scholar
Jacobson, M.J., Flohr, P., Gascoigne, A., Leng, M.J., Sadekov, A., Cheng, H., Fleitmann, D., 2021. Heterogenous late Holocene climate in the Eastern Mediterranean—the Kocain Cave record from SW Turkey. Geophysical Research Letters 48, e2021GL094733.Google Scholar
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.T., Essling, A.M., 1971. Precision measurement of half-lives and specific activities of U 235 and U 238. Physical Review C 4(5), 1889.Google Scholar
Jamieson, R.A., Baldini, J.U., Brett, M.J., Taylor, J., Ridley, H.E., Ottley, C.J., Prufer, K.M., et al., 2016. Intra-and inter-annual uranium concentration variability in a Belizean stalagmite controlled by prior aragonite precipitation: a new tool for reconstructing hydro-climate using aragonitic speleothems. Geochimica et Cosmochimica Acta 190, 332346.Google Scholar
Jochum, K.P., Pfänder, J., Woodhead, J.D., Willbold, M., Stoll, B., Herwig, K., Hofmann, A.W., 2005. MPI-DING glasses: new geological reference materials for in situ Pb isotope analysis. Geochemistry, Geophysics, Geosystems 6(10), 115.Google Scholar
Jochum, K.P., Scholz, D., Stoll, B., Weis, U., Wilson, S.A., Yang, Q., Andreae, M.O., 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chemical Geology 318, 3144.Google Scholar
Jones, M.D., Roberts, C.N., 2008. Interpreting lake isotope records of Holocene environmental change in the Eastern Mediterranean. Quaternary International 181, 3238.Google Scholar
Kallel, N., Duplessy, J.-C., Labeyrie, L., Fontugne, M., Paterne, M., Montacer, M., 2000. Mediterranean pluvial periods and sapropel formation during the last 200.000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 4558.Google Scholar
Keinan, J., Bar-Matthews, M., Ayalon, A., Zilberman, T., Agnon, A., Frumkin, A., 2019. Paleoclimatology of the Levant from Zalmon Cave speleothems, the northern Jordan Valley, Israel. Quaternary Science Reviews 220, 142153.Google Scholar
Kim, S.T., O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.Google Scholar
Koeniger, P., Margane, A., Abi-Rizk, J., Himmelsbach, T., 2017. Stable isotope based mean catchment altitudes of springs in the Lebanon Mountains. Hydrological Processes 21, 37083718.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., Gonzalez Rouco, J.F., Jansen, E., et al., 2013. Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, pp. 383464.Google Scholar
Matthews, A., Affek, H. P., Ayalon, A., Vonhof, H. B., Bar-Matthews, M. 2021. Eastern Mediterranean climate change deduced from the Soreq Cave fluid inclusion stable isotopes and carbonate clumped isotopes record of the last 160 ka. Quaternary Science Reviews 272, 107223.Google Scholar
McDermott, F., 2004. Palaeoclimate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, 901918.Google Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W., Agno, A., 2006. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66, 421431.Google Scholar
Mischel, S.A., Scholz, D., Spötl, C., Jochum, K.P., Schröder-Ritzrau, A., Fiedler, S., 2017. Holocene climate variability in Central Germany and a potential link to the polar North Atlantic: a replicated record from three coeval speleothems. Holocene 27, 509525.Google Scholar
Nader, F.H., Abdel-Rahman, A.F.M., Haidar, A.T., 2006. Petrographic and chemical traits of Cenomanian platform carbonates (central Lebanon): implications for depositional environments. Cretaceous Research 27, 689706.Google Scholar
Nehme, C., Kluge, T., Verheyden, S., Nader, F., Charalambidou, I., Weissbach, T., Gucel, S. et al. 2020. Speleothem record from Pentadactylos cave (Cyprus): new insights into climatic variations during MIS 6 and MIS 5 in the Eastern Mediterranean. Quaternary Science Reviews, 250, 106663.Google Scholar
Nehme, C., Verheyden, S., Breitenbach, S.F., Gillikin, D.P., Verheyden, A., Cheng, H., Noble, S., et al., 2018. Climate dynamics during the penultimate glacial period recorded in a speleothem from Kanaan Cave, Lebanon (central Levant). Quaternary Research 90, 1025.Google Scholar
Nehme, C., Verheyden, S., Nader, F.H., Adjizian-Gerard, J., Genty, D., De Bont, K., Clayes, P., 2019. Cave dripwater isotopic signals related to the altitudinal gradient of Mt. Lebanon: implication for speleothem studies. International Journal of Speleology 48, 18.Google Scholar
Nehme, C., Verheyden, S., Noble, S.R., Farrant, A.R., Sahy, D., Hellstrom, J., Delannoy, J.J., Claeys, P., 2015. Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave, Lebanon. Climate of the Past 11, 17851799.Google Scholar
Orland, I.J., Burstyn, Y., Bar-Matthews, M., Kozdon, R., Ayalon, A., Matthews, A., Valley, J.W., 2014. Seasonal climate signals (1990–2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chemical Geology 363, 322333.Google Scholar
Regattieri, E., Zanchetta, G., Isola, I., Zanella, E., Drysdale, R.N., Hellstrom, J.C., Zerboni, A., et al. 2019. Holocene Critical Zone dynamics in an Alpine catchment inferred from a speleothem multiproxy record: disentangling climate and human influences. Scientific Reports 9, 17829.Google Scholar
Roberts, M.S., Smart, P.L., Baker, A., 1998. Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters 154, 237246.Google Scholar
Roberts, N., Eastwood, W.J., Kuzucuoğlu, C., Fiorentino, G., Caracuta, V., 2011. Climatic, vegetation and cultural change in the Eastern Mediterranean during the mid-Holocene environmental transition. Holocene 21, 147162.Google Scholar
Robinson, S.A., Black, S., Sellwood, B.W., Valdes, P.J., 2006. A review of palaeoclimates and palaeoenvironments in the Levant and eastern Mediterranean from 25 to 5 ka BP: setting the environmental background for the evolution of human civilisation. Quaternary Science Reviews 25, 15171541.Google Scholar
Rohling, E.J., Cane, T.R., Cooke, S., Sprovieri, M., Bouloubassi, I., Emeis, K.C., Schiebel, R., et al., 2002. African monsoon variability during the previous interglacial maximum. Earth and Planetary Science Letters 202, 6175.Google Scholar
Rossignol-Strick, M., Paterne, M., 1999. A synthetic pollen record of the eastern Mediterranean sapropels of the last 1 Ma: implications for the time-scale and formation of sapropels. Marine Geology 153, 221237.Google Scholar
Rowe, P.J., Mason, J.E., Andrews, J.E., Marca, A.D., Thomas, L., van Calsteren, P., Jex, C.N., Vonhof, H.B., Al-Omari, S., 2012. Speleothem isotopic evidence of winter rainfall variability in northeast Turkey between 77 and 6 ka. Quaternary Science Reviews 45, 6072.Google Scholar
Rozanski, K., Araguas, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records. Geophysical Monograph Series 78. Washington, DC: American Geophysical Union, pp. 137.Google Scholar
Saad, Z., Kazpard, V., El Samrani, A.G., Slim, K., 2005. Chemical and isotopic composition of rainwater in coastal and highland regions in Lebanon. Journal of Environmental Hydrology 13, 111.Google Scholar
Scholz, D., Hoffmann, D.L., 2011. StalAge—an algorithm designed for construction of speleothem age models. Quaternary Geochronology 6, 369382.Google Scholar
Scrivner, A.E., Vance, D., Rohling, E.J., 2004. New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes. Geology 32, 565568.Google Scholar
Şekeryapan, C., Streuman, H.J., van der Plicht, J., Woldring, H., van der Veen, Y., Boomer, I., 2020. Late Glacial to mid-Holocene lacustrine ostracods from S. Anatolia, Turkey: a palaeoenvironmental study with pollen & stable isotopes. Catena 188, 511.Google Scholar
Shabaan, A., Houhou, R., 2015. Drought or humidity oscillations? The case of coastal zone of Lebanon. Journal of Hydrology 529, 17681775.Google Scholar
Sinclair, D.J., Banner, J.L., Taylor, F.W., Partin, J., Jenson, J., Mylroie, J., Miklavič, B., 2012. Magnesium and strontium systematics in tropical speleothems from the Western Pacific. Chemical Geology 294, 117.Google Scholar
Sinha, A., Kathayat, G., Weiss, H., Li, H., Cheng, H., Reuter, J., Edwards, R.L., 2019. Role of climate in the rise and fall of the Neo-Assyrian Empire. Science Advances 5, 11, 6656.Google Scholar
Telesca, L., Shaban, A., Gascoin, S., Darwich, T., Drapeau, L., El Hage, M., Faour, G., 2014. Characterization of the time dynamics of monthly satellite snow cover data on Mountain Chains in Lebanon. Journal of Hydrology 519, 32143222.Google Scholar
Tooth, A.F., Fairchild, I.J., 2003. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of Hydrology 273, 5168.Google Scholar
Torfstein, A., Goldstein, S.L., Kagan, E.J., Stein, M., 2013b. Integrated multi-site U–Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta 104, 210231.Google Scholar
Torfstein, A., Goldstein, S.L., Stein, M., Enzel, Y., 2013a. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69, 17.Google Scholar
Treble, P., Shelley, J.M.G., Chappell, J., 2003. Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from SW Australia. Earth and Planetary Science Letters 216, 141153.Google Scholar
Tremaine, D.M., Froelich, P.N., Wang, Y., 2011. Speleothem calcite farmed in situ: modern calibration of δ18O & δ13C paleoclimate proxies in a continuously monitored natural cave system. Geochimica et Cosmochimica Acta 75, 49294950.Google Scholar
Ulbrich, U., Lionello, P., Belusic, D., Jacobeit, J., Knippertz, P., Kuglitsch, F.G., Leckebusch, G.C., et al., 2012. Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds, and their extremes. In: Lionello, P. (Ed.), The Climate of the Mediterranean Region: From the Past to the Future. Amsterdam: Elsevier, pp. 301346.Google Scholar
Ünal-İmer, E., Shulmeister, J., Zhao, J.X., Uysal, I.T., Feng, Y.X., Nguyen, A.D., Yüce, G., 2015. An 80 ka long continuous speleothem record from Dim Cave, SW Turkey with paleoclimatic implications for the Eastern Mediterranean. Scientific Reports 5, 13560.Google Scholar
Van Zeist, W., Woldring, H., 1980. Holocene vegetation and climate of northwestern Syria. Palaeohistoria 22, 111125.Google Scholar
Verheyden, S., Keppens, E., Fairchild, I.J., McDermott, F., Weis, D., 2000. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions. Chemical Geology 169, 131144.Google Scholar
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R., Swennen, R., 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon. Quaternary Research 70, 368381.Google Scholar
Weissbach, T., Kluge, T., Affolter, S., Leuenberger, M. C., Vonhof, H., Riechelmann, D.F., Fohlmeister, J. 2023. Constraints for precise and accurate fluid inclusion stable isotope analysis using water-vapour saturated CRDS techniques. Chemical Geology, 617, 121268.Google Scholar
Xoplaki, E., González-Rouco, J.F., Luterbacher, J., Wanner, H., 2004. Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dynamics 23, 6378.Google Scholar
Yasuda, Y., Kitagawa, H., Nakagawa, T., 2000. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. Quaternary International 73, 127136.Google Scholar
Ziv, B., Saaroni, H., Romem, M., Heifetz, E., Harnik, N., Baharad, A., 2010. Analysis of conveyor belts in winter Mediterranean cyclones. Theoretical and Applied Climatology 99, 441455.Google Scholar