Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-27T04:02:25.364Z Has data issue: false hasContentIssue false

Studying the internal structures of the central region of prestellar core L1517B in Taurus molecular cloud using ammonia (NH3) (1,1) and (2,2) lines

Published online by Cambridge University Press:  16 November 2023

Atanu Koley*
Affiliation:
Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Chile
*
Corresponding author: A. Koley, Email: atanuphysics15@gmail.com

Abstract

Measurement of internal structures in the prestellar core is essential for understanding the initial conditions prior to star formation. In this work, we study the ammonia lines (NH$_{3}$) (J, K = 1,1 and 2,2) in the central region of the prestellar core L1517B with the Karl G. Jansky Very Large Array (VLA) radio telescope (spatial resolution $\sim$ 3.7′′). Our analysis indicates that the central region of the core is close-to-round in shape obtained both from NH$_{3}$ (1,1) and (2,2) emissions. Radially averaged kinetic temperature ($T_{k}$) is almost constant with a mean value of $\sim$ 9 K. A radially sharp decrease in kinetic temperature ($T_{k}$) has not been observed inside the central dense nucleus of this prestellar core. In addition, we also notice that there is an overall velocity gradient from north-east to south-west direction in this region, which may be indicative of the rotational motion of the core. We then calculate the parameter $\beta$, which is defined as the ratio of rotational energy to gravitational potential energy and find that $\beta$ equals to $\sim$ 5 $\times$ 10$^{-3}$; which indicates that rotation has no effect at least inside the central region of the core. We also perform the viral analysis and observe that the central region may be in a stage of contraction. From this study, we also show that turbulence inside the central region is subsonic in nature (sonic Mach number, $M_{s}$ $<$ 1) and has no prominent length-scale dependence. Furthermore, we notice that the decrement of excitation temperature ($T_{ex}$) and column density of NH$_{3}$ from the centre of the core to the outer side with the peak values of $\sim$ 5.6 K and $\sim$ 10$^{15}$ cm$^{-2}$, respectively. In conclusion, this work examines different physical and kinematical properties of the central region of the L1517B prestellar core.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, P. 2017, CR Geosci., 349, 187 CrossRefGoogle Scholar
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33 Google Scholar
Barranco, J. A., & Goodman, A. A. 1998, ApJ, 504, 207 CrossRefGoogle Scholar
Benson, P. J., & Myers, P. C. 1989, ApJS, 71, 89 CrossRefGoogle Scholar
Caselli, P., Pineda, J. E., Zhao, B., et al. 2019, ApJ, 874, 89 CrossRefGoogle Scholar
Chitsazzadeh, S. 2014, PhD thesis, University of Victoria, CanadaGoogle Scholar
Comrie, A., Wang, K.-S., Hsu, S.-C., et al. 2021, CARTA: Cube Analysis and Rendering Tool for Astronomy, Astrophysics Source Code Library, record ascl:2103.031, ascl:2103.031 Google Scholar
Crapsi, A., Caselli, P., Walmsley, M. C., & Tafalla, M. 2007, A&A, 470, 221 CrossRefGoogle Scholar
Dirienzo, W. J., Brogan, C., Indebetouw, R., et al. 2015, AJ, 150, 159 CrossRefGoogle Scholar
Dobashi, K., Shimoikura, T., Nakamura, F., et al. 2018, ApJ, 864, 82 CrossRefGoogle Scholar
Dobashi, K., Shimoikura, T., Ochiai, T., et al. 2019, ApJ, 879, 88 CrossRefGoogle Scholar
Dunham, M. M., Offner, S. S. R., Pineda, J. E., et al. 2016, ApJ, 823, 160 CrossRefGoogle Scholar
Evans Neal, J., I. 1999, ARA&A, 37, 311 CrossRefGoogle Scholar
Friesen, R. K., Pineda, J. E., co-PIs, et al. 2017, ApJ, 843, 63 CrossRefGoogle Scholar
Fu, T.-M., Gao, Y., & Lou, Y.-Q. 2011, ApJ, 741, 113 Google Scholar
Galli, P. A. B., Loinard, L., Bouy, H., et al. 2019, A&A, 630, A137 CrossRefGoogle Scholar
Ginsburg, A., & Mirocha, J. 2011, PySpecKit: Python Spectroscopic Toolkit, Astrophysics Source Code Library, record ascl:1109.001, ascl:1109.001 Google Scholar
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528 Google Scholar
Henshaw, J. D., Longmore, S. N., Kruijssen, J. M. D., et al. 2016, MNRAS, 457, 2675 Google Scholar
Henshaw, J. D., Ginsburg, A., Haworth, T. J., et al. 2019, MNRAS, 485, 2457 CrossRefGoogle Scholar
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90CrossRefGoogle Scholar
Kauffmann, J., Bertoldi, F., Bourke, T. L., Evans, N. J., I., & Lee, C. W. 2008, A&A, 487, 993 Google Scholar
Kauffmann, J., Pillai, T., & Goldsmith, P. F. 2013, ApJ, 779, 185 Google Scholar
Kirk, J. M., Ward-Thompson, D., & Crutcher, R. M. 2006, MNRAS, 369, 1445 CrossRefGoogle Scholar
Koley, A. 2022, MNRAS, 516, 185 Google Scholar
Koley, A. 2023, PASA, 40, e046 CrossRefGoogle Scholar
Koley, A., & Roy, N. 2019, MNRAS, 483, 593 CrossRefGoogle Scholar
Koley, A., Roy, N., Menten, K. M., et al. 2021, MNRAS, 501, 4825 CrossRefGoogle Scholar
Koley, A., Roy, N., Momjian, E., Sarma, A. P., & Datta, A. 2022, MNRAS, 516, L48 CrossRefGoogle Scholar
Krieger, N., Ott, J., Beuther, H., et al. 2017, ApJ, 850, 77 CrossRefGoogle Scholar
Kudoh, T., & Basu, S. 2014, ApJ, 794, 127 Google Scholar
Mangum, J. G., & Shirley, Y. L. 2015, PASP, 127, 266 CrossRefGoogle Scholar
Markwardt, C. B. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 411, Astronomical Data Analysis Software and Systems XVIII, ed. Bohlender, D. A., Durand, D., & Dowler, P., 251 Google Scholar
Megías, A., Jiménez-Serra, I., Marítn-Pintado, J., et al. 2023, MNRAS, 519, 1601 Google Scholar
Myers, P. C., Mardones, D., Tafalla, M., Williams, J. P., & Wilner, D. J. 1996, ApJ, 465, L133 CrossRefGoogle Scholar
Pillai, T., Wyrowski, F., Carey, S. J., & Menten, K. M. 2006, A&A, 450, 569 CrossRefGoogle Scholar
Pineda, J. E., Schmiedeke, A., Caselli, P., et al. 2021, ApJ, 912, 7 CrossRefGoogle Scholar
Pineda, J. E., Harju, J., Caselli, P., et al. 2022, AJ, 163, 294 Google Scholar
Robitaille, T., & Bressert, E. 2012, APLpy: Astronomical Plotting Library in Python, Astrophysics Source Code Library, record ascl:1208.017, ascl:1208.017 Google Scholar
Roy, N., Datta, A., Momjian, E., & Sarma, A. P. 2011, ApJ, 739, L4 Google Scholar
Ruoskanen, J., Harju, J., Juvela, M., et al. 2011, A&A, 534, A122 Google Scholar
Sahu, D., Liu, S.-Y., Liu, T., et al. 2021, ApJ, 907, L15 Google Scholar
Schnee, S., Caselli, P., Goodman, A., et al. 2007, ApJ, 671, 1839 Google Scholar
Schnee, S., & Goodman, A. 2005, ApJ, 624, 254 CrossRefGoogle Scholar
Schnee, S., Enoch, M., Noriega-Crespo, A., et al. 2010, ApJ, 708, 127 CrossRefGoogle Scholar
Sepúlveda, I., Estalella, R., Anglada, G., et al. 2020, A&A, 644, A128 CrossRefGoogle Scholar
Sipilä, O., Caselli, P., Redaelli, E., & Spezzano, S. 2022, A&A, 668, A131 Google Scholar
Stahler, S. W., & Palla, F. 2004, The Formation of StarsCrossRefGoogle Scholar
Tafalla, M., Myers, P. C., Caselli, P., & Walmsley, C. M. 2004a, A&A, 416, 191 Google Scholar
Tafalla, M., Myers, P. C., Caselli, P., & Walmsley, C. M. 2004b, Ap&SS, 292, 347 Google Scholar
Tokuda, K., Fujishiro, K., Tachihara, K., et al. 2020, ApJ, 899, 10 CrossRefGoogle Scholar
Walmsley, C. M., & Ungerechts, H. 1983, A&A, 122, 164 Google Scholar