Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T04:00:11.046Z Has data issue: false hasContentIssue false

Perturbation analysis for continuous-time Markov chains in a weak sense

Published online by Cambridge University Press:  13 May 2024

Na Lin*
Affiliation:
Central South University
Yuanyuan Liu*
Affiliation:
Central South University
*
*Postal address: School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, 410083, China.
*Postal address: School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, 410083, China.

Abstract

By the technique of augmented truncations, we obtain the perturbation bounds on the distance of the finite-time state distributions of two continuous-time Markov chains (CTMCs) in a type of weaker norm than the V-norm. We derive the estimates for strongly and exponentially ergodic CTMCs. In particular, we apply these results to get the bounds for CTMCs satisfying Doeblin or stochastically monotone conditions. Some examples are presented to illustrate the limitation of the V-norm in perturbation analysis and to show the quality of the weak norm.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, K., Berkhout, J. and Heidergott, B. (2016). A critical account of perturbation analysis of Markov chains. Markov Process. Relat. Fields 22, 227266.Google Scholar
Anderson, W. J. (1991). Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer, New York.CrossRefGoogle Scholar
Ferre, D., Herve, L. and Ledoux, J. (2013). Regular perturbation of V-geometrically ergodic Markov chains. J. Appl. Prob. 50, 184194.CrossRefGoogle Scholar
Hart, A. G. and Tweedie, R. L. (2012). Convergence of invariant measures of truncation approximations to Markov processes. Appl. Math. 3, 22052215.CrossRefGoogle Scholar
Heidergott, B., Hordijk, A. and Leder, N. (2010). Series expansions for continuous-time Markov processes. Operat. Res. 58, 756767.CrossRefGoogle Scholar
Herve, L. and Ledoux, J. (2014). Approximating Markov chains and V-geometric ergodicity via weak perturbation theory. Stoch. Process. Appl. 124, 613638.CrossRefGoogle Scholar
Ipsen, I. and Selee, T. (2011). Ergodicity coefficients defined by vector norms. J. Matrix Anal. Appl. 32, 153200.CrossRefGoogle Scholar
Jacka, S. D. and Roberts, G. O. (1995). Weak convergence of conditioned processes on a countable state space. J. Appl. Prob. 32, 902916.CrossRefGoogle Scholar
Jiang, S., Liu, Y. and Tang, Y. (2017). A unified perturbation analysis framework for countable Markov chains. Linear Algebra Appl. 529, 413440.CrossRefGoogle Scholar
Kartashov, N. V. (1985). Criteria for uniform ergodicity and strong stability of Markov chains with a common phase space. Theory Prob. Math. Statist. 30, 7189.Google Scholar
Kartashov, N. V. (1986). Strongly stable Markov chains. J. Soviet Math. 34, 14931498.CrossRefGoogle Scholar
Kartashov, N. V. (1996). Strong Stable Markov Chains. VSP, Utrecht.CrossRefGoogle Scholar
Liu, Y. (2012). Perturbation bounds for the stationary distributions of Markov chains. SIAM J. Matrix Anal. Appl. 33, 10571074.CrossRefGoogle Scholar
Liu, Y. (2015). Perturbation analysis for continuous-time Markov chains. Sci. China Math. 58, 26332642.CrossRefGoogle Scholar
Liu, Y. and Li, W. (2018). Error bounds for augmented truncation approximations of Markov chains via the perturbation method. Adv. Appl. Prob. 50, 645669.CrossRefGoogle Scholar
Liu, Y., Zhang, H. and Zhao, Y. (2008). Computable strongly ergodic rates of convergence for continuous-time Markov chains. ANZIAM J. 49, 463478.CrossRefGoogle Scholar
Lund, R. B., Meyn, S. P. and Tweedie, R. L. (1996). Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Prob. 6, 218237.CrossRefGoogle Scholar
Mao, Y., Zhang, M. and Zhang, Y. (2013). A generalization of Dobrushin coefficient. Chinese J. Appl. Prob. Statist. 29, 489494.Google Scholar
Masuyama, H. (2017). Continuous-time block-monotone Markov chains and their block-augmented truncations. Linear Algebra Appl. 514, 105150.CrossRefGoogle Scholar
Medina-Aguayo, F., Rudolf, D. and Schweizer, N. (2020). Perturbation bounds for Monte Carlo within Metropolis via restricted approximations. Stoch. Process. Appl. 130, 22002227.CrossRefGoogle ScholarPubMed
Meyn, S. P. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Springer, London.CrossRefGoogle Scholar
Mitrophanov, A. Yu. (2003). Stability and exponential convergence of continuous-time Markov chains. J. Appl. Prob. 40, 970979.CrossRefGoogle Scholar
Mouhoubi, Z. (2021). Perturbation and stability bounds for ergodic general state Markov chains with respect to various norms. Le Matematiche 76, 243276.Google Scholar
Mouhoubi, Z. and Aissani, D. (2010). New perturbation bounds for denumerable Markov chains. Linear Algebra Appl. 432, 16271649.CrossRefGoogle Scholar
Pollett, P., Zhang, H. and Cairns, B. J. (2007). A note on extinction times for the general birth, death and catastrophe process. J. Appl. Prob. 44, 566569.CrossRefGoogle Scholar
Rudolf, D. and Schweizer, N. (2018). Perturbation theory for Markov chains via Wasserstein distance. Bernoulli 24, 26102639.CrossRefGoogle Scholar
Shardlow, T. and Stuart, A. M. (2000). A perturbation theory for ergodic Markov chains and application to numerical approximations. SIAM J. Numer. Anal. 37, 11201137.CrossRefGoogle Scholar
Zhang, Y. (2001). Strong ergodicity for single-birth processes. J. Appl. Prob. 38, 270277.CrossRefGoogle Scholar