Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T18:18:39.462Z Has data issue: false hasContentIssue false

Characterization of the West Siberian lineage of zokors (Mammalia, Rodentia, Spalacidae, Myospalacinae) and divergence in molar development

Published online by Cambridge University Press:  04 December 2023

Semion E. Golovanov*
Affiliation:
Laboratory of Cenozoic Geology, Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Lomonosov Moscow State University, Moscow 119234, Russia
Vladimir S. Zazhigin
Affiliation:
Laboratory of Quaternary Stratigraphy, Geological Institute of Russian Academy of Sciences, Moscow 119017, Russia
*
*Corresponding author.

Abstract

Zokors (Myospalacinae) continue to be the center of systematics discussions. Phylogenetic schemes based on molecular data do not always agree with each other, nor can phylogenetic schemes based on paleontological material be complete due to the only-partial description of West Siberian zokors. This paper tries to fill this gap and presents a description of the West Siberian lineage from the late early Pleistocene to the present, together with an analysis of molar development in other zokor lineages. We describe two new species and one subspecies (Myospalax myospalax krukoveri n. ssp., Myospalax convexus n. sp., Prosiphneus razdoleanensis n. sp.) ancestral to the extant Myospalax myospalax Laxmann, 1769. We also reveal differences in the ontogeny of molars of modern species that were not previously detailed. These differences, together with paleontological data, indicate that in the West Siberian lineage, peramorphosis occurred in the structure of the chewing surface (with the exception of the lower m1), whereas in all other zokor lineages, there was pedomorphosis. On the basis of these results, we suggest a new view on the systematics of Myospalacinae.

UUID: http://zoobank.org/b06d6c99-1648-454b-9b95-4d869bfe8bdc

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamenko, O.M., 1974, Mesozoic and Cenozoic of Steppe Altai: Novosibirsk, Nauka Press, 168 p.Google Scholar
Adamenko, O.M., and Zazhigin, V.S., 1965, The fauna of small mammals and the geological age of Kochkovo suite in southern Kulunda, in Peive, A.V., Kuznetzova, K.I., Menner, V.V., and Tomofeev, P.P., eds., Stratigraphic Importance of Small Mammalian Anthropogen Fauna: Moscow, Nauka Press, p. 162172.Google Scholar
Agustí, J., Castillo, C., and Galobart, A, 1993, Heterochronic evolution in the late Pliocene–early Pleistocene arvicolids of the Mediterranean area: Quaternary International, v 19, p. 5156.CrossRefGoogle Scholar
Alexeeva, N.V., 2006, Overview of Myospalacids (Cricetidae, Myospalacinae) from Transbaikalia: Beiträge zur Paläontologie, v. 30, p. 14.Google Scholar
Allen, G.M., 1938, The Mammals of China and Mongolia: New York, The American Museum of Natural History, 620 p.CrossRefGoogle Scholar
Arkhipov, S.A., 1971, Quaternary Period of Western Siberia: Novosibirsk, Nauka Press, 335 p.Google Scholar
Bowdich, T.E., 1821, An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travellers: Paris, J. Smith, 115 p.Google Scholar
Brants, A., 1827, Het geslacht der muizen: Berlin, Gedrukt Ter Akademische Boekdrukkery, 190 p.Google Scholar
Butkauskas, D., Starodubaite, M., Potapov, M., Potapova, O., Abramov, S., and Litvinov, Y., 2020, Phylogenetic relationships between zokors Myospalax (Mammalia, Rodentia) determined on the basis of morphometric and molecular analyses: Proceedings of the Latvian Academy of Sciences, v. 74, no. 1, p. 2534.Google Scholar
Calede, J.J.M., and Glusman, J.W., 2017, Geometric morphometric analyses of worn cheek teeth help identify extant and extinct gophers (Rodentia, Geomyidae): Palaeontology, v. 60, p. 281307.CrossRefGoogle Scholar
Erbajeva, M.A., 1970, The history of the Anthropogene Lagomorphs and Rodents of Selenginian midland: Moscow, Nauka Press, 132 p.Google Scholar
Flynn, L.J., 2009, The antiquity of Rhizomys and independent acquisition of fossorial traits in subterranean muroids: Bulletin of the American Museum of Natural History, v. 331, p. 128156.CrossRefGoogle Scholar
Galkina, L.I., and Nadeev, I.V., 1980, Some questions of morphology, distribution and history of the zokors (Rodentia, Myospalacinae) of Western Siberia: Proceedings of the Biological Institute of the SB AS USSR, v. 44, p. 162176.Google Scholar
Galkina, L.I., Markina, A.B., and Teletin, V.I., 1969, Modern and past distribution of zokors in the West Siberian Lowland, in Proceedings of the 2nd All-Union Mammalogy Conference: The Mammals (Evolution, Karyology, Taxonomy, Fauna): Novosibirsk, Siberian Branch of the Academy of Sciences of the USSR, p. 124–126.Google Scholar
Gray, J.E., 1821, On the natural arrangement of vertebrose animals: London Medical Repository, v. 15, p. 296310.Google Scholar
Gromov, V.I., 1948, Paleontological and Archaeological Substantiation of the Stratigraphy of Continental Deposits of the Quaternary Period in the Territory of the USSR (Mammals, Paleolith): Moscow, Trudy Instituta Geologicheskih Nauk AN SSSR, Geologicheskaya Seriya, 520 p.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001, PAST: Paleontological statistics software package for education and data analysis: Palaeontologia Electronica, v. 4, https://palaeo-electronica.org/2001_1/past/past.pdf.Google Scholar
Kang, Y., Su, J., Yao, B., Wang, C., Zhang, D., and Ji, W., 2021, Interspecific skull variation at a small scale: the genus Eospalax exhibits functional morphological variations related to the exploitation of ecological niche: Journal of Zoological Systematics and Evolutionary Research, v. 59, p. 902917.CrossRefGoogle Scholar
Kang, Y., Wang, Z., Yao, B., An, K., Pu, Q., Zhang, C., Zhang, Z., Hou, Q., Zhang, D., and Su, J., 2023, Environmental and climatic drivers of phenotypic evolution and distribution changes in a widely distributed subfamily of subterranean mammals: Science of the Total Environment, v. 878, p. 163177.CrossRefGoogle Scholar
Klingenberg, C.P., 2011, MorphoJ: an integrated software package for geometric morphometrics: Molecular Ecology Resources, v. 11, p. 353357.CrossRefGoogle ScholarPubMed
Kormos, T., 1932, Neue Wühlmäuse aus dem Oberpliocänvon Püspökfürdő: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 69, p. 323346.Google Scholar
Kretzoi, M., 1961, (Zwei Myospalaxiden aus dem Nordchina): Vertebrata hungarica, v. 3, p. 123136. [in Hungarian]Google Scholar
Krukover, A.A., 1992, Quaternary microteriofaunas of glacial and nonglacial zones of the West Siberia [Ph.D. thesis]: Novosibirsk, Joint Institute of Geology, Geophysics and Mineralogy, 379 p.Google Scholar
Krukover, A., 2007, Quaternary arvicolid faunas of the southern West Siberian Plain: Courier Forschungsinstitut Senckenberg, v. 259, p. 9398.Google Scholar
Lawrence, M.A., 1991, A fossil Myospalax cranium (Rodentia, Muridae) from Shanxi, China, with observations on Zokor relationships: Bulletin of the American Museum of Natural History, v. 206, p. 261386.Google Scholar
Laxmann, E., 1769, Sibirische briefe, herausgegeben von August Ludwig Schlo̊zer: Go̊ttingen und Gotha, Verlegts J. C. Dieterich, 106 p.Google Scholar
Li, Q., and Wang, X., 2015, Into Tibet: an early Pliocene dispersal of fossil zokor (Rodentia: Spalacidae) from Mongolian Plateau to the Hinterland of Tibetan Plateau: PLoS ONE, v. 10, n. e0144993, https://doi.org/10.1371/journal.pone.0144993.CrossRefGoogle Scholar
Lilljeborg, W., 1866, Systematisk Öfversigt af de Gnagande Däggdjuren, Glires: Uppsala, Kongliga Akademiska Boktryckeriet, 73 p.CrossRefGoogle Scholar
Linnaeus, C., 1758, Systema Naturae 10, v. 1, Part 1: Stockholm, Laurentii Salvii, 702 p.Google Scholar
Liu, L.P., Zheng, S.H., Cui, N., and Wang, L.H., 2014, Rootless myospalacines from upper Pliocene to lower Pleistocene of Wenwanggou section, Lingtai, Gansu: Vertebrata Palasiatica, v. 52, p. 440466.Google Scholar
Liu, X., Zhang, S., Cai, Z., Kuang, Z., Wan, N., et al., 2022, Genomic insights into zokors’ phylogeny and speciation in China: Proceedings of the National Academy of Sciences of the United States of America, v. 119, n. e2121819119, https://doi.org/10.1073/pnas.2121819119.CrossRefGoogle ScholarPubMed
Makhmutov, S.M., 1983, Siberian zokor in Kazakhstan: Hunting and Hunting Management, v. 5, p. 1415.Google Scholar
McGuire, J.L., 2011, Identifying California Microtus species using geometric morphometrics documents Quaternary geographic range contractions: Journal of Mammalogy, v. 92, p. 13831394.CrossRefGoogle Scholar
McNamara, K.J., 2012, Heterochrony: the evolution of development: Evolution: Education and Outreach, v. 5, p. 203218.Google Scholar
Milne-Edwards, M.A., 1867, Observations sur Quelques Mammifères Du nord De La Chine: Annales des sciences naturelles, v. 7, p. 374376.Google Scholar
Milne-Edwards, M.A., 1874, Recherches pour servir à l'histoire naturelle des mammifères, v. 1: Paris, Masson, p. 332.Google Scholar
Ognev, S.I., 1947, Animals of the USSR and Adjacent Countries, v. 5: Moscow, Akademiya Nauk SSSR, 809 p.Google Scholar
Pallas, P.S., 1773, Reise durch verschiedene provinzen des Russischen reichs. Descriptiones animalium, v. 2: St. Petersburg, Gedruckt beyder Kayserlichen Academie der Wissenschaften, 760 p.Google Scholar
Pallas, P.S, 1778, Novae species quadrupedum e glirum ordine cum illustrationibus variis complurium ex hoc ordine animalium: Erlangae, SVMTV, Wolfgangi Waltheri, 388 p.Google Scholar
Pallas, P.S., 1779, Novae species quadrupedum e glirum ordine cum illustrationibus variis complurium ex hoc ordine animalium. Fasciculi I, II: Erlangae, Academia Petropolitana, 388 p.Google Scholar
Pavlenko, M.V., Korablev, V.P., and Tsvirka, M.V., 2014, Genetic differentiation and systematic of zokors from Eastern Russia: comparison of peripheral populations of Myospalax psilurus (Rodentia, Spalacidae): Russian Journal of Zoology, v. 93, p. 906916.Google Scholar
Pokatilov, A.G., 2012, Stratigraphy of the Eurasian Cenozoic (Paleontological Basis): Irkutsk, Irkutsk State Technical University Press, 304 p.Google Scholar
Puzachenko, A.Y., Pavlenko, M.V., and Korablev, V.P., 2009, Variability of skulls in zokors (Rodentia, Myospalacidae): Russian Journal of Zoology, v. 88, p. 92112.Google Scholar
Puzachenko, A.Y., Pavlenko, M.V., Korablev, V.P., and Tsvirka, M.V., 2013, Karyotype, genetic and morphological variability in North China zokor, Myospalax psilurus (Rodentia, Spalacidae, Myospalacinae): Russian Journal of Theriology, v. 13, p. 2746.CrossRefGoogle Scholar
Qin, C., Wang, Y., Liu, S., Song, Y., and Jin, C., 2021, First discovery of fossil Episiphneus (Myospalacinae, Rodentia) from Northeast China: Quaternary International, v. 591, p. 5969.CrossRefGoogle Scholar
Rohlf, F.J., 2015, The yps series of software: Hystrix, v. 26, https://doi.org/10.4404/hystrix-26.1-11264.Google Scholar
Schrank, F.v.P., 1798, Fauna Boica, v. 1: Nürnberg, in der Stein'schen Buchhandlung, 720 p.Google Scholar
Smith, S.M., and Wilson, G.P., 2017, Species discrimination of co-occurring small fossil mammals: a case study of the Cretaceous–Paleogene multituberculate genus Mesodma: Journal of Mammalian Evolution, v. 24, p. 147157.CrossRefGoogle Scholar
Teilhard de Chardin, P., 1926, Description de Mammiferes Tertiaires de Chine et de Mongolie. Annales de Paleontologie: Annales de Paleontologie, v. 15, 51 p.Google Scholar
Teilhard de Chardin, P., 1940, The fossils from locality 18 near Peking: Palaeontologia Sinica, v. 9, p. 194.Google Scholar
Teilhard de Chardin, P., 1942, New rodents of the Pliocene and lower Pleistocene of north China: Institut de ǵeobiologie, v. 9, 101 p.Google Scholar
Teilhard de Chardin, P., and Young, C., 1931, Fossil mammals from the late Cenozoic of north China: Palaeontologia Sinica, v. 9, p. 167.Google Scholar
Tesakov, A.S., Frolov, P.D., Titov, V.V., Dickinson, M., Meijer, T., Parfitt, S.A, Preece, R.C., and Penkman, K.E.H., 2020, Aminostratigraphical test of the East European Mammal Zonation for the late Neogene and Quaternary: Quaternary Science Reviews, v. 245, n. 106434, https://doi.org/10.1016/j.quascirev.2020.106434.CrossRefGoogle Scholar
Tsvirka, M.V., Pavlenko, M.V., and Korablev, V.P., 2011, Genetic diversity and phylogenetic relationships in the zokor subfamily Myospalacinae (Rodentia, Muridae) inferred from RAPD-PCR: Russian Journal of Genetics, v. 47, p. 205215.CrossRefGoogle ScholarPubMed
Vangengeim, E.A., 1977, Paleontologic Foundation of the Anthropogene Stratigraphy of Northern Asia (on Mammals): Moscow, Nauka Press, 172 p.Google Scholar
Vdovin, V.V., and Galkina, L.I., 1976, Elements of the Tiraspolian and Khaprovian faunal complexes of the Anthropogene in Kamen-on-Ob site (Western Siberia), in Kashmenskaya, O.V., and Nikolaev, V.A., eds., Problems of Geomorphology and Quaternary Geology: Novosibirsk, Nauka Press., p. 135142.Google Scholar
Vitek, N.S., and Chen, H., 2022, The impact of tooth wear on occlusal shape and the identification of fossils of New World porcupines (Rodentia: Erethizontidae): Journal of Mammalian Evolution, v. 29, p. 677692.CrossRefGoogle Scholar
von Koenigswald, W., 2011, Diversity of hypsodont teeth in mammalian dentitions—construction and classification: Palaeontographica A, v. 294, p. 6394.CrossRefGoogle Scholar
Weber, G.W., and Bookstein, F.L., 2011, Virtual Anthropology: A Guide to a New Interdisciplinary Field: New York, Springer Verlag, 423 p.CrossRefGoogle Scholar
Wyatt, M.R., Hopkins, S.S.B., and Davis, E.B., 2021, Using 2D dental geometric morphometrics to identify modern Perognathus and Chaetodipus specimens (Rodentia, Heteromyidae): Journal of Mammalogy, v. 102, p. 10871100.CrossRefGoogle Scholar
Zazhigin, V.S., 1980, Rodents of the Pliocene and Anthropogene of South Western Siberia: Moscow, Nauka Press, 156 p.Google Scholar
Zhang, T., Lei, M.-N., Zhou, H., Chen, Z.-Z., and Shi, P., 2022, Phylogenetic relationships of the zokor genus Eospalax (Mammalia, Rodentia, Spalacidae) inferred from whole-genome analyses, with description of a new species endemic to Hengduan Mountains: Zoological Research, v. 43, p. 331342.CrossRefGoogle ScholarPubMed
Zheng, S., 1994, Classification and evolution of the Siphneidae, in Tomida, Y., Li, C.K., and Setoguchi, T., eds., Rodent and Lagomorph Families of Asian Origins and Diversification: Tokyo, National Science Museum, p. 5776.Google Scholar
Zykina, V.S., and Zykin, V.S., 2012, Loess–Paleosol Sequence and Evolution of the Natural Environment and Climate of Western Siberia in the Pleistocene: Novosibirsk, Geo Publications, 476 p.Google Scholar