Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T11:12:41.672Z Has data issue: false hasContentIssue false

Robust relation of streamwise velocity autocorrelation in atmospheric surface layers based on an autoregressive moving average model

Published online by Cambridge University Press:  21 February 2024

Fei-Chi Zhang
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
Jin-Han Xie*
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China Joint Laboratory of Marine Hydrodynamics and Ocean Engineering, Laoshan Laboratory, Shandong 266237, PR China
Song Xi Chen*
Affiliation:
School of Mathematical Sciences, Guanghua School of Management and Center for Statistical Science, Peking University, Beijing 100871, PR China
Xiaojing Zheng*
Affiliation:
Department of Mechanics and Engineering Science at College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China Center for Particle-Laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
*
Email addresses for correspondence: jinhanxie@pku.edu.cn, csx@gsm.pku.edu.cn, xjzheng@lzu.edu.cn
Email addresses for correspondence: jinhanxie@pku.edu.cn, csx@gsm.pku.edu.cn, xjzheng@lzu.edu.cn
Email addresses for correspondence: jinhanxie@pku.edu.cn, csx@gsm.pku.edu.cn, xjzheng@lzu.edu.cn

Abstract

We construct an autoregressive moving average (ARMA) model consisting of the history and random effects for the streamwise velocity fluctuation in boundary-layer turbulence. The distance to the wall and the boundary-layer thickness determine the time step and the order of the ARMA model, respectively. Based on the autocorrelation's analytical expression of the ARMA model, we obtain a global analytical expression for the second-order structure function, which asymptotically captures the inertial, dynamic and large-scale ranges. Specifically, the exponential autocorrelation of the ARMA model arises from the autoregressive coefficients and is modified to logarithmic behaviour by the moving-average coefficients. The asymptotic expressions enable us to determine model coefficients by existing parameters, such as the Kolmogorov and the Townsend–Perry constants. A consequent double-log expression for the characteristic length scale is derived and is justified by direct numerical simulation data with $Re_\tau \approx 5200$ and field-measured neutral atmospheric surface layer data with $Re_\tau \sim O(10^6)$ from the Qingtu Lake Observation Array site. This relation is robust because it applies to $Re_\tau$ from $O(10^4)$ to $O(10^6)$, and even when the statistics of natural ASL deviate from those of canonical boundary-layer turbulence, e.g. in the case of imbalance in energy production and dissipation, and when the Townsend–Perry constant deviates from traditional values.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselmet, F., Gagne, Y., Hopfinger, E.J. & Antonia, R.A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 6389.CrossRefGoogle Scholar
Bailey, S.C.C. & Smits, A.J. 2010 Experimental investigation of the structure of large-and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 651, 339356.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365 (1852), 665681.CrossRefGoogle ScholarPubMed
Chamecki, M., Dias, N.L., Salesky, S.T. & Pan, Y. 2017 Scaling laws for the longitudinal structure function in the atmospheric surface layer. J. Atmos. Sci. 74 (4), 11271147.CrossRefGoogle Scholar
Chauhan, K.A. 2007 Study of canonical wall-bounded turbulent flows. PhD thesis, Illinois Institute of Technology.Google Scholar
Choi, B. 2012 ARMA Model Identification. Springer Science & Business Media.Google Scholar
Davidson, P.A. & Krogstad, P.-Å. 2009 A simple model for the streamwise fluctuations in the log-law region of a boundary layer. Phys. Fluids 21 (5), 055105.CrossRefGoogle Scholar
Davidson, P.A. & Krogstad, P.-Å. 2014 A universal scaling for low-order structure functions in the log-law region of smooth-and rough-wall boundary layers. J. Fluid Mech. 752, 140156.CrossRefGoogle Scholar
Davidson, P.A., Krogstad, P.-Å. & Nickels, T.B. 2006 a A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18 (6), 065112.CrossRefGoogle Scholar
Davidson, P.A., Nickels, T.B. & Krogstad, P.-Å. 2006 b The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.CrossRefGoogle Scholar
Di Paola, M. 1998 Digital simulation of wind field velocity. J. Wind Engng Ind. Aerodyn. 74, 91109.CrossRefGoogle Scholar
Dilling, S. & MacVicar, B.J. 2017 Cleaning high-frequency velocity profile data with autoregressive moving average (ARMA) models. Flow Meas. Instrum. 54, 6881.CrossRefGoogle Scholar
Ding, M., Nguyen, K.X., Liu, S., Otte, M.J. & Tong, C. 2018 Investigation of the pressure–strain-rate correlation and pressure fluctuations in convective and near neutral atmospheric surface layers. J. Fluid Mech. 854, 88120.CrossRefGoogle Scholar
Faranda, D., Dubrulle, B., Daviaud, F. & Pons, F.M.E. 2014 a Probing turbulence intermittency via autoregressive moving-average models. Phys. Rev. E 90 (6), 061001.CrossRefGoogle ScholarPubMed
Faranda, D., Pons, F.M.E., Dubrulle, B., Daviaud, F., Saint-Michel, B., Herbert, É. & Cortet, P.-P. 2014 b Modelling and analysis of turbulent datasets using auto regressive moving average processes. Phys. Fluids 26 (10), 105101.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
de Giovanetti, M., Hwang, Y. & Choi, H. 2016 Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511538.CrossRefGoogle Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.CrossRefGoogle Scholar
Gustenyov, N., Egerer, M., Hultmark, M., Smits, A.J. & Bailey, S.C.C. 2023 Similarity of length scales in high-Reynolds-number wall-bounded flows. J. Fluid Mech. 965, A17.CrossRefGoogle Scholar
He, G., Jin, G. & Yang, Y. 2017 Space-time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5170.CrossRefGoogle Scholar
Hu, R., Dong, S. & Vinuesa, R. 2023 General attached eddies: scaling laws and cascade self-similarity. Phys. Rev. Fluids 8 (4), 044603.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Hutchins, N., Hambleton, W.T. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N., Nickels, T.B., Marusic, I. & Chong, M.S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kader, B.A. & Yaglom, A.M. 1989 Spectra and Correlation Functions of Surface Layer Atmospheric Turbulence in Unstable Thermal Stratification, pp. 387412. Springer.Google Scholar
Kang, Y., Belušić, D. & Smith-Miles, K. 2014 Detecting and classifying events in noisy time series. J. Atmos. Sci. 71 (3), 10901104.CrossRefGoogle Scholar
Kang, Y., Belušić, D. & Smith-Miles, K. 2015 Classes of structures in the stable atmospheric boundary layer. Q. J. R. Meteorol. Soc. 141 (691), 20572069.CrossRefGoogle Scholar
Kareem, A. 2008 Numerical simulation of wind effects: a probabilistic perspective. J. Wind Engng Ind. Aerodyn. 96 (10–11), 14721497.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kleinhans, D., Friedrich, R., Schaffarczyk, A.P. & Peinke, J. 2009 Synthetic turbulence models for wind turbine applications. In Progress in Turbulence III (ed. J. Peinke, M. Oberlack & A. Talamelli), pp. 111–114. Springer.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301305.Google Scholar
Kovasznay, L.S.G., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.CrossRefGoogle Scholar
Krenk, S. & Møller, R.N. 2019 Turbulent wind field representation and conditional mean-field simulation. Proc. R. Soc. A 475 (2223), 20180887.CrossRefGoogle ScholarPubMed
Kusiak, A., Zheng, H. & Song, Z. 2009 Short-term prediction of wind farm power: a data mining approach. IEEE Trans. Energy Convers. 24 (1), 125136.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.CrossRefGoogle Scholar
Li, X., Hutchins, N., Zheng, X., Marusic, I. & Baars, W.J. 2022 Scale-dependent inclination angle of turbulent structures in stratified atmospheric surface layers. J. Fluid Mech. 942, A38.CrossRefGoogle Scholar
Liu, H., Erdem, E. & Shi, J. 2011 Comprehensive evaluation of ARMA–GARCH (-M) approaches for modeling the mean and volatility of wind speed. Appl. Energy 88 (3), 724732.CrossRefGoogle Scholar
Liu, H., He, X. & Zheng, X. 2021 An investigation of particles effects on wall-normal velocity fluctuations in sand-laden atmospheric surface layer flows. Phys. Fluids 33 (10), 103309.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2017 Spatial length scales of large-scale structures in atmospheric surface layers. Phys. Rev. Fluids 2, 064606.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2019 a Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. J. Fluid Mech. 861, 585607.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2019 b Three-dimensional representation of large-scale structures based on observations in atmospheric surface layers. J. Geophys. Res. 124 (20), 1075310771.CrossRefGoogle Scholar
Marusic, I. & Kunkel, G.J. 2003 Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15 (8), 24612464.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.CrossRefGoogle Scholar
Meneveau, C. & Sreenivasan, K.R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59 (13), 1424.CrossRefGoogle ScholarPubMed
Monin, A.S. & Obukhov, A.M. 1954 Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst. Akad. Nauk SSSR 24 (151), 163187.Google Scholar
Monkewitz, P.A. 2022 Asymptotics of streamwise Reynolds stress in wall turbulence. J. Fluid Mech. 931, A18.CrossRefGoogle Scholar
Obukhov, A. 1946 Turbulence in thermally inhomogeneous atmosphere. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR 1, 95115.Google Scholar
Önder, A. & Meyers, J. 2018 On the interaction of very-large-scale motions in a neutral atmospheric boundary layer with a row of wind turbines. J. Fluid Mech. 841, 10401072.CrossRefGoogle Scholar
O'Neill, P.L., Nicolaides, D., Honnery, D., Soria, J. 2004 Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In 15th Australasian Fluid Mechanics Conference (ed. M. Behnia, W. Lin & G.D. McBain), vol. 1, pp. 1–4. University of Sydney.Google Scholar
Pan, Y. & Chamecki, M. 2016 A scaling law for the shear-production range of second-order structure functions. J. Fluid Mech. 801, 459474.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Puccioni, M., Calaf, M., Pardyjak, E.R., Hoch, S., Morrison, T.J., Perelet, A. & Iungo, G.V. 2023 Identification of the energy contributions associated with wall-attached eddies and very-large-scale motions in the near-neutral atmospheric surface layer through wind LiDAR measurements. J. Fluid Mech. 955, A39.CrossRefGoogle Scholar
Razaz, M. & Kawanisi, K. 2011 Signal post-processing for acoustic velocimeters: detecting and replacing spikes. Meas. Sci. Technol. 22 (12), 125404.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Rossi, R., Lazzari, M. & Vitaliani, R. 2004 Wind field simulation for structural engineering purposes. Intl J. Numer. Meth. Engng 61 (5), 738763.CrossRefGoogle Scholar
Samiee, M., Akhavan-Safaei, A. & Zayernouri, M. 2022 Tempered fractional LES modeling. J. Fluid Mech. 932, A4.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Schmitt, F.G. & Huang, Y. 2016 Stochastic Analysis of Scaling Time Series: From Turbulence Theory to Applications. Cambridge University Press.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Sfetsos, A. 2002 A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 27 (2), 163174.CrossRefGoogle Scholar
She, Z.S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72 (3), 336.CrossRefGoogle ScholarPubMed
Shumway, R.H., Stoffer, D.S. & Stoffer, D.S. 2000 Time Series Analysis and Its Applications, vol. 3. Springer.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to $\delta ^+\approx 2000$. Phys. Fluids 26 (10), 105109.CrossRefGoogle Scholar
de Silva, C.M., Hutchins, N. & Marusic, I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.CrossRefGoogle Scholar
de Silva, C.M., Marusic, I., Woodcock, J.D. & Meneveau, C. 2015 Scaling of second-and higher-order structure functions in turbulent boundary layers. J. Fluid Mech. 769, 654686.CrossRefGoogle Scholar
Taylor, G.I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 2 (1), 196212.Google Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. 164 (919), 476490.Google Scholar
Tennekes, H. 1979 The exponential Lagrangian correlation function and turbulent diffusion in the inertial subrange. Atmos. Environ. 13 (11), 15651567.CrossRefGoogle Scholar
Tennekes, H. 1982 Similarity Relations, Scaling Laws and Spectral Dynamics, pp. 3768. Springer.Google Scholar
Thomson, D.J. 1987 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529556.CrossRefGoogle Scholar
Tong, C. & Ding, M. 2019 Multi-point Monin–Obukhov similarity in the convective atmospheric surface layer using matched asymptotic expansions. J. Fluid Mech. 864, 640669.CrossRefGoogle Scholar
Tong, C. & Nguyen, K.X. 2015 Multipoint Monin–Obukhov similarity and its application to turbulence spectra in the convective atmospheric surface layer. J. Atmos. Sci. 72 (11), 43374348.CrossRefGoogle Scholar
Townsend, A.A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1), 97120.CrossRefGoogle Scholar
Townsend, A.A.R. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tritton, D.J. 2012 Physical Fluid Dynamics. Springer Science & Business Media.Google Scholar
Tutkun, M., George, W.K., Delville, J., Stanislas, M., Johansson, P., Foucaut, J.-M. & Coudert, S. 2009 Two-point correlations in high Reynolds number flat plate turbulent boundary layers. J. Turbul. 10, N21.CrossRefGoogle Scholar
Vercauteren, N., Boyko, V., Faranda, D. & Stiperski, I. 2019 Scale interactions and anisotropy in stable boundary layers. Q. J. R. Meteorol. Soc. 145 (722), 17991813.CrossRefGoogle Scholar
Vercauteren, N. & Klein, R. 2015 A clustering method to characterize intermittent bursts of turbulence and interaction with submesomotions in the stable boundary layer. J. Atmos. Sci. 72 (4), 15041517.CrossRefGoogle Scholar
Vercauteren, N., Mahrt, L. & Klein, R. 2016 Investigation of interactions between scales of motion in the stable boundary layer. Q. J. R. Meteorol. Soc. 142 (699), 24242433.CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2007 Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.CrossRefGoogle Scholar
Wallace, J.M. 2014 Space-time correlations in turbulent flow: a review. Theor. Appl. Mech. Lett. 4 (2), 022003.CrossRefGoogle Scholar
Wang, G., Gu, H. & Zheng, X. 2020 Large scale structures of turbulent flows in the atmospheric surface layer with and without sand. Phys. Fluids 32 (10), 106604.CrossRefGoogle Scholar
Wang, G. & Zheng, X. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wyngaard, J.C. & Coté, O.R. 1971 The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci. 28 (2), 190201.2.0.CO;2>CrossRefGoogle Scholar
Wyngaard, J.C., Coté, O.R. & Izumi, Y. 1971 Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci. 28 (7), 11711182.2.0.CO;2>CrossRefGoogle Scholar
Xie, J.-H., de Silva, C., Baidya, R., Yang, X.I.A. & Hu, R. 2021 Third-order structure function in the logarithmic layer of boundary-layer turbulence. Phys. Rev. Fluids 6 (7), 074602.CrossRefGoogle Scholar
Yaglom, A.M. 1994 Fluctuation spectra and variances in convective turbulent boundary layers: a reevaluation of old models. Phys. Fluids 6 (2), 962972.CrossRefGoogle Scholar
Yang, X.I.A., Baidya, R., Johnson, P., Marusic, I. & Meneveau, C. 2017 Structure function tensor scaling in the logarithmic region derived from the attached eddy model of wall-bounded turbulent flows. Phys. Rev. Fluids 2 (6), 064602.CrossRefGoogle Scholar
Yang, Q., Willis, A.P. & Hwang, Y. 2019 Exact coherent states of attached eddies in channel flow. J. Fluid Mech. 862, 10291059.CrossRefGoogle Scholar
Zhang, F.-C., Xie, J.-H., Chen, S.X. & Zheng, X. 2023 Analysing and predicting streamwise velocity fluctuations in nonstationary atmospheric surface layers using the ARMA-GARCH model. In IUTAM Symposium on Turbulent Structure and Particles-Turbulence Interaction (ed. X. Zheng & S. Balachandar), pp. 104–116. Springer.CrossRefGoogle Scholar
Zhang, F.-C., Xie, J.-H. & Zheng, X. 2022 Structure-function based study on the logarithmic region in atmospheric surface layer with and without sand. Phys. Rev. Fluids 7 (8), 084609.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar