Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T01:41:57.411Z Has data issue: false hasContentIssue false

Interface coupling effect and multi-mode Faraday instabilities in a three-layer fluid system

Published online by Cambridge University Press:  01 March 2024

Yi-Fei Huang
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Rong-Lin Zhuo
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
Juan-Cheng Yang*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
*
Email addresses for correspondence: yangjc@xjtu.edu.cn, mjni@ucas.ac.cn
Email addresses for correspondence: yangjc@xjtu.edu.cn, mjni@ucas.ac.cn

Abstract

We investigate the Faraday instabilities of a three-layer fluid system in a cylindrical container containing low-viscosity liquid metal, sodium hydroxide solution and air by establishing the Mathieu equations with considering the viscous model derived by Labrador et al. (J. Phys.: Conf. Ser., vol. 2090, 2021, 012088). The Floquet analysis, asymptotic analysis, direct numerical simulation and experimental method are adopted in the present study. We obtain the dispersion relations and critical oscillation amplitudes of zigzag and varicose modes from the analysis of the Mathieu equations, which agree well with the experimental result. Furthermore, considering the coupling strength of two interfaces, besides zigzag and varicose modes, we find a beating instability mode that contains two primary frequencies, with its average frequency equalling half of the external excitation frequency in the strongly coupled system. In the weakly coupled system, the $A$-interface instability, $B$-interface instability and $A$&$B$-interface instability are defined. Finally, we obtain a critical wavenumber $k_c$ that can determine the transition from zigzag or varicose modes to the corresponding $A$-interface or $B$-interface instability.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batson, W., Zoueshtiagh, F. & Narayanan, R. 2013 The Faraday threshold in small cylinders and the sidewall non-ideality. J. Fluid Mech. 729, 496523.Google Scholar
Batson, W., Zoueshtiagh, F. & Narayanan, R. 2015 Two-frequency excitation of single-mode Faraday waves. J. Fluid Mech. 764, 538571.CrossRefGoogle Scholar
Benjamin, T.B. & Ursell, F.J. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225 (1163), 505515.Google Scholar
Bestehorn, M. & Pototsky, A. 2016 Faraday instability and nonlinear pattern formation of a two-layer system: a reduced model. Phys. Rev. Fluids 1 (6), 063905.Google Scholar
Brosius, N., Ward, K., Wilson, E., Karpinsky, Z., SanSoucie, M., Ishikawa, T., Matsumoto, S. & Narayanan, R. 2021 Benchmarking surface tension measurement method using two oscillation modes in levitated liquid metals. npj Microgravity 7 (1), 10.CrossRefGoogle ScholarPubMed
Chen, P., Luo, Z., Güven, S., Tasoglu, S., Ganesan, A.V., Weng, A. & Demirci, U. 2014 Microscale assembly directed by liquid-based template. Adv. Mater. 26 (34), 59365941.Google Scholar
Cross, M.C. & Hohenberg, P.C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 851.CrossRefGoogle Scholar
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.Google Scholar
Faraday, M. 1831 XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Guex, A.G., Di Marzio, N., Eglin, D., Alini, M. & Serra, T. 2021 The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater. Today Bio 10, 100110.Google Scholar
Guowei, H. & Jiachun, L. 1997 Chaos of liquid surface waves in a vessel under vertical excitation with slowly modulated amplitude. Acta Mechanica Sin. 13, 106112.CrossRefGoogle Scholar
Handschuh-Wang, S., Chen, Y., Zhu, L. & Zhou, X. 2018 Analysis and transformations of room-temperature liquid metal interfaces – a closer look through interfacial tension. ChemPhysChem 19 (13), 15841592.CrossRefGoogle ScholarPubMed
Henderson, D.M. & Miles, J.W. 1991 Faraday waves in 2 : 1 internal resonance. J. Fluid Mech. 222, 449470.Google Scholar
Herreman, W., Nore, C., Guermond, J.-L., Cappanera, L., Weber, N. & Horstmann, G.M. 2019 Perturbation theory for metal pad roll instability in cylindrical reduction cells. J. Fluid Mech. 878, 598646.Google Scholar
Horstmann, G.M., Weber, N. & Weier, T. 2018 Coupling and stability of interfacial waves in liquid metal batteries. J. Fluid Mech. 845, 135.Google Scholar
Hwang, I., Mukhopadhyay, R.D., Dhasaiyan, P., Choi, S., Kim, S.-Y., Ko, Y.H., Baek, K. & Kim, K. 2020 Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems. Nat. Chem. 12 (9), 808813.Google Scholar
Kidambi, R. 2013 Inviscid Faraday waves in a brimful circular cylinder. J. Fluid Mech. 724, 671694.Google Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. A 452 (1948), 11131126.Google Scholar
Kumar, K. & Tuckerman, L.S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Labrador, E., Sánchez, P.S., Porter, J. & Shevtsova, , 2021 Secondary Faraday waves in microgravity. J. Phys.: Conf. Ser. 2090, 012088.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. 2nd edn, Pergamon.Google Scholar
Laroche, C., Bacri, J.-C., Devaud, M., Timothée, J. & Falcon, E. 2019 Observation of the resonance frequencies of a stable torus of fluid. Phys. Rev. Lett. 123 (9), 094502.Google Scholar
Miles, J. 1999 On Faraday resonance of a viscous liquid. J. Fluid Mech. 395, 321325.Google Scholar
Milner, S.T. 1991 Square patterns and secondary instabilities in driven capillary waves. J. Fluid Mech. 225, 81100.CrossRefGoogle Scholar
Morley, N.B., Burris, J., Cadwallader, L.C. & Nornberg, M.D. 2008 GaInSn usage in the research laboratory. Rev. Sci. Instrum. 79 (5), 056107.Google Scholar
Paul, S. & Kumar, K. 2007 Effect of magnetic field on parametrically driven surface waves. Proc. R. Soc. Lond. A 463 (2079), 711722.Google Scholar
Pototsky, A. & Bestehorn, M. 2016 Faraday instability of a two-layer liquid film with a free upper surface. Phys. Rev. Fluids 1 (2), 023901.CrossRefGoogle Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E 70 (2), 025201.Google Scholar
Pototsky, A., Oron, A. & Bestehorn, M. 2019 Vibration-induced floatation of a heavy liquid drop on a lighter liquid film. Phys. Fluids 31 (8), 087101.Google Scholar
Pucci, G., Amar, M.B. & Couder, Y. 2013 Faraday instability in floating liquid lenses: the spontaneous mutual adaptation due to radiation pressure. J. Fluid Mech. 725, 402427.CrossRefGoogle Scholar
Pucci, G., Fort, E., Amar, M.B. & Couder, Y. 2011 Mutual adaptation of a Faraday instability pattern with its flexible boundaries in floating fluid drops. Phys. Rev. Lett. 106 (2), 024503.Google Scholar
Rajchenbach, J. & Clamond, D. 2015 Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited. J. Fluid Mech. 777, R2.Google Scholar
Rajchenbach, J., Clamond, D. & Leroux, A. 2013 Observation of star-shaped surface gravity waves. Phys. Rev. Lett. 110 (9), 094502.CrossRefGoogle ScholarPubMed
Rajchenbach, J., Leroux, A. & Clamond, D. 2011 New standing solitary waves in water. Phys. Rev. Lett. 107 (2), 14.CrossRefGoogle ScholarPubMed
Shao, X., Gabbard, C.T., Bostwick, J.B. & Saylor, J.R. 2021 a On the role of meniscus geometry in capillary wave generation. Exp. Fluids 62, 14.Google Scholar
Shao, X., Wilson, P., Bostwick, J.B. & Saylor, J.R. 2021 b Viscoelastic effects in circular edge waves. J. Fluid Mech. 919, A18.Google Scholar
Shao, X., Wilson, P., Saylor, J.R. & Bostwick, J.B. 2021 c Surface wave pattern formation in a cylindrical container. J. Fluid Mech. 915, A19.CrossRefGoogle Scholar
Umeki, M. 1991 Faraday resonance in rectangular geometry. J. Fluid Mech. 227, 161192.Google Scholar
Ward, K., Matsumoto, S. & Narayanan, R. 2019 a The electrostatically forced Faraday instability: theory and experiments. J. Fluid Mech. 862, 696731.Google Scholar
Ward, K., Zoueshtiagh, F. & Narayanan, R. 2019 b Faraday instability in double-interface fluid layers. Phys. Rev. Fluids 4 (4), 043903.CrossRefGoogle Scholar
Wilson, P., Shao, X., Saylor, J.R. & Bostwick, J.B. 2022 Role of edge effects and fluid depth in azimuthal Faraday waves. Phys. Rev. Fluids 7 (1), 014803.Google Scholar
Zhao, X., Tang, J. & Liu, J. 2018 Electrically switchable surface waves and bouncing droplets excited on a liquid metal bath. Phys. Rev. Fluids 3 (12), 124804.CrossRefGoogle Scholar