Hostname: page-component-76dd75c94c-qmf6w Total loading time: 0 Render date: 2024-04-30T07:48:21.984Z Has data issue: false hasContentIssue false

On the shear-induced lift in two-way coupled turbulent channel flow laden with heavy particles

Published online by Cambridge University Press:  01 April 2024

Yucang Ruan
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China
Zuoli Xiao*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China HEDPS and Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, PR China Nanchang Innovation Institute, Peking University, Nanchang 330008, PR China
*
Email address for correspondence: z.xiao@pku.edu.cn

Abstract

The importance of shear-induced lift, i.e. Saffman lift, is investigated in two-way coupling point-particle direct numerical simulation of turbulent channel flow laden with heavy particles. A new criterion is established for the critical particle diameter normalized by wall viscous length, and the effect of Saffman lift on particle motion can be neglected when the particle diameter is smaller than the critical value. The new criterion agrees well with the numerical results. We further study the influence of Saffman lift on particle motion and turbulence modulation. The results suggest that the Saffman lift will increase near-wall particle velocity and reduce particle accumulation therein. By integrating the particle motion equation, it is demonstrated that the mean particle streamwise velocity is dependent on the particle wall-normal velocity. This theoretically explains why the presence of a wall-normal force alters the streamwise velocity of particles. A theoretical profile of mean particle streamwise velocity at different Stokes numbers is then obtained by introducing the diffusive gradient hypothesis and Prandtl mixing length model. In addition, the present results reveal that the Saffman lift tends to augment the level of turbulence attenuation. The spectral analysis shows that the Saffman lift reduces the turbulent energy of small scales in the buffer region and large structures in the logarithmic region. When the Saffman lift is absent, near-wall particle streaks can be observed in the buffer region, which tend to separate fluid streaks. By contrast, the Saffman lift tends to prevent the formation of near-wall particle streaks.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13 (8), 24372440.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to $Re_\tau =4000$. J. Fluid Mech. 742, 171191.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Chen, M. & McLaughlin, J.B. 1995 A new correlation for the aerosol deposition rate in vertical ducts. J. Colloid Interface Sci. 169 (2), 437455.CrossRefGoogle Scholar
Coleman, G.N., Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2020 a Interface-resolved simulations of small inertial particles in turbulent channel flow. J. Fluid Mech. 883, A54.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2020 b Interface-resolved simulations of small inertial particles in turbulent channel flow – Corrigendum. J. Fluid Mech. 891, E2.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2021 Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 922, A9.CrossRefGoogle Scholar
Crowe, C.T., Sharma, M.P. & Stock, D.E. 1977 The particle-source-in cell (PSI-Cell) model for gas-droplet flows. J. Fluids Engng 99 (2), 325332.CrossRefGoogle Scholar
Dai, Q., Jin, T., Luo, K. & Fan, J. 2019 Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. I. Turbulent structures and asymmetric properties. Phys. Fluids 31 (8), 083302.CrossRefGoogle Scholar
Dritselis, C.D. 2016 Direct numerical simulation of particle-laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dyn. Res. 48 (1), 015507.CrossRefGoogle Scholar
Dunn, M.G. 2012 Operation of gas turbine engines in an environment contaminated with volcanic ash. Trans. ASME J. Turbomach. 134 (5), 051001.CrossRefGoogle Scholar
Eaton, J.K. 2009 Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Intl J. Multiphase Flow 35 (9), 792800.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Guo, T., Fang, J., Zhang, J. & Li, X. 2022 Direct numerical simulation of shock-wave/boundary layer interaction controlled with convergent–divergent riblets. Phys. Fluids 34 (8), 086101.CrossRefGoogle Scholar
Horwitz, J.A.K., Iaccarino, G., Eaton, J.K. & Mani, A. 2022 The discrete Green's function paradigm for two-way coupled Euler–Lagrange simulation. J. Fluid Mech. 931, A3.CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.CrossRefGoogle Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10), 101302.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kuerten, J.G.M. 2016 Point-particle DNS and LES of particle-laden turbulent flow - a state-of-the-art review. Flow Turbul. Combust. 97 (3), 689713.CrossRefGoogle Scholar
Kulick, J.D., Fessler, J.R. & Eaton, J.K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33 (1), 143159.CrossRefGoogle Scholar
Lenormand, E., Sagaut, P. & Ta Phuoc, L. 2000 Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number. Intl J. Numer. Meth. Fluids 32 (4), 369406.3.0.CO;2-6>CrossRefGoogle Scholar
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53 (5), 13851403.CrossRefGoogle Scholar
Loth, E. 2008 Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46 (9), 22192228.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
McLaughlin, J.B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids A 1 (7), 12111224.CrossRefGoogle Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18 (1), 145147.CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_\tau =590$. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Nasr, H., Ahmadi, G. & Mclaughlin, J.B. 2009 A DNS study of effects of particle–particle collisions and two-way coupling on particle deposition and phasic fluctuations. J. Fluid Mech. 640, 507536.CrossRefGoogle Scholar
Peng, C., Ayala, O.M. & Wang, L.-P. 2019 A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech. 875, 10961144.CrossRefGoogle Scholar
Rouson, D.W.I. & Eaton, J.K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.CrossRefGoogle Scholar
Saffman, P.G. 1968 The lift on a small sphere in a slow shear flow - Corrigendum. J. Fluid Mech. 31 (3), 624624.Google Scholar
Sardina, G., Picano, F., Schlatter, P., Brandt, L. & Casciola, C.M. 2011 Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86 (3–4), 519532.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Schiller, L. & Naumann, A.Z. 1933 Uber grundlegenden berechnungen bei der schwerkraftaufberitung. Ver. Deut. Ing. 77, 318320.Google Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.CrossRefGoogle Scholar
Steger, J.L. & Warming, R.F. 1981 Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. J. Comput. Phys. 40, 263293.CrossRefGoogle Scholar
Stokes, G.G. 1850 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc. 6, 8.Google Scholar
Szczepankowski, A. & Szymczak, J. 2011 The effect of a dusty environment upon performance and operating parameters of aircraft gas turbine engines. J. KONBiN 17, 257268.Google Scholar
Tsai, S.-T. 2022 Sedimentation motion of sand particles in moving water (I): the resistance on a small sphere moving in non-uniform flow. Theor. Appl. Mech. Lett. 12 (6), 100392.CrossRefGoogle Scholar
Vreman, A.W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103136.CrossRefGoogle Scholar
Vreman, A.W. & Kuerten, J.G.M. 2014 Comparison of direct numerical simulation databases of turbulent channel flow at $Re_\tau = 180$. Phys. Fluids 26 (1), 015102.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Xiao, W., Jin, T., Luo, K., Dai, Q. & Fan, J. 2020 Eulerian–Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer. J. Fluid Mech. 903, A19.CrossRefGoogle Scholar
Yeung, P.K. & Pope, S.B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79 (2), 373416.CrossRefGoogle Scholar
Yu, Z., Xia, Y., Guo, Y. & Lin, J. 2021 Modulation of turbulence intensity by heavy finite-size particles in upward channel flow. J. Fluid Mech. 913, A3.CrossRefGoogle Scholar
Zeng, L., Balachandar, S., Fischer, P. & Najjar, F. 2008 Interactions of a stationary finite-sized particle with wall turbulence. J. Fluid Mech. 594, 271305.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.CrossRefGoogle Scholar
Zhu, Z., Hu, R., Lei, Y., Shen, L. & Zheng, X. 2022 Particle resolved simulation of sediment transport by a hybrid parallel approach. Intl J. Multiphase Flow 152, 104072.CrossRefGoogle Scholar