Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T06:43:23.948Z Has data issue: false hasContentIssue false

Self-similarity in over-tripped turbulent boundary-layer flows

Published online by Cambridge University Press:  03 April 2024

Zhanqi Tang*
Affiliation:
Department of Mechanics, Tianjin University, Tianjin 300350, China Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300350, China
Nan Jiang
Affiliation:
Department of Mechanics, Tianjin University, Tianjin 300350, China Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300350, China
*
Email address for correspondence: zhanqitang@tju.edu.cn

Abstract

The scaling universality of structure functions is studied for artificially thickened turbulent boundary-layer flows in over-tripped impacts by using hot-wire measurement datasets. The self-similarity behaviours in the inner and outer regions are examined from the viewpoint of different flow mechanisms. In the inner region, the relative ratios between structure functions for the energy-containing range of scales exhibit universality behaviour, in accordance with Townsend's attached eddy hypothesis. This universality of the energy-containing range of scales extends further away from the wall by increasing the tripping intensity. On the other hand, the impact of the external intermittency on the self-similarity of small-scale turbulence is examined through the intermittent zone in over-tripped conditions. Towards the boundary-layer edge, the structure functions exhibit a growing departure from self-similarity and analytical prediction, and it is demonstrated that the departure is primarily due to external intermittency. Moreover, based on the conditional statistics concentrated in the turbulent regimes, it is revealed that the small scales in the turbulence regime are homogenized in a self-similar behaviour, which is independent of the current tripping conditions.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L. & Leschziner, M. 2019 On the departure of near-wall turbulence from the quasi-steady state. J. Fluid Mech. 871, R1.CrossRefGoogle Scholar
Anselmet, F., Gagne, Y., Hopfinger, E.J. & Antonia, R.A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63–89.CrossRefGoogle Scholar
Antonia, R.A., Djenidi, L., Danaila, L. & Tang, S.L. 2017 Small scale turbulence and the finite Reynolds number effect. Phys. Fluids 29, 020715.CrossRefGoogle Scholar
Antonia, R.A., Satyaprakash, B.R. & Hussain, A.K.M.F. 1982 Statistics of fine-scale velocity in turbulent plane and circular jets. J. Fluid Mech. 119, 5589.CrossRefGoogle Scholar
Antonia, R.A., Tang, S.L., Djenidi, L. & Danaila, L. 2015 Boundedness of the velocity derivative skewness in various turbulent flows. J. Fluid Mech. 781, 727744.CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2017 Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Phil. Trans. A, Mathe. Phys. Engng Sci. 375, 20160077.Google ScholarPubMed
Baars, W.J., Talluru, K.M., Hutchins, N. & Marusic, I. 2015 Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56, 188.CrossRefGoogle Scholar
Batchelor, G.K. & Townsend, A.A. 1949 The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A, Math. Phys. Sci. 199, 238255.Google Scholar
Benzi, R., Ciliberto, S., Baudet, C., Chavarria, G.R. & Tripiccione, R. 1993 a Extended self-similarity in the dissipation range of fully developed turbulence. Europhys. Lett. 24, 275279.CrossRefGoogle Scholar
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 b Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29R32.CrossRefGoogle ScholarPubMed
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Buxton, O.R.H., Ewenz Rocher, M. & Rodríguez-López, E. 2018 Influence of strong perturbations on wall-bounded flows. Phys. Rev. Fluids 3, 014605.CrossRefGoogle Scholar
Castillo, L. & Johansson, T.G. 2002 The effects of the upstream conditions on a low Reynolds number turbulent boundary layer with zero pressure gradient. J. Turbul. 3, N31.CrossRefGoogle Scholar
Chauhan, K., Philip, J., de Silva, C.M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 133.CrossRefGoogle Scholar
Chauhan, K.A., Monkewitz, P.A. & Nagib, H.M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404.CrossRefGoogle Scholar
Chen, C.-H.P. & Blackwelder, R.F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89, 131.CrossRefGoogle Scholar
Chen, L., Fan, Z., Tang, Z., Wang, X., Shi, D. & Jiang, N. 2023 Outer-layer coherent structures from the turbulent/non-turbulent interface perspective at moderate Reynolds number. Exp. Therm. Fluid Sci. 140, 110760.CrossRefGoogle Scholar
Chung, D. & McKeon, B.J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows. NASA-TR-1244.Google Scholar
Davidson, P.A., Nickels, T.B. & Krogstad, P.Å. 2006 The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.CrossRefGoogle Scholar
Debye, P., Anderson, H.R. & Brumberger, H. 1957 Scattering by an inhomogeneous solid. II. The correlation function and its application. J. Appl. Phys. 28, 679683.CrossRefGoogle Scholar
Djenidi, L., Antonia, R.A., Talluru, M.K. & Abe, H. 2017 Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows. Phys. Rev. Fluids 2, 064608.CrossRefGoogle Scholar
Dogan, E., Hanson, R.E. & Ganapathisubramani, B. 2016 Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79107.CrossRefGoogle Scholar
Dogan, E., Örlü, R., Gatti, D., Vinuesa, R. & Schlatter, P. 2019 Quantification of amplitude modulation in wall-bounded turbulence. Fluid Dyn. Res. 51, 011408.CrossRefGoogle Scholar
Elsinga, G.E. & da Silva, C.B. 2019 How the turbulent/non-turbulent interface is different from internal turbulence. J. Fluid Mech. 866, 216238.CrossRefGoogle Scholar
Erm, L.P. & Joubert, P.N. 1991 Low-Reynolds-number turbulent boundary layers. J. Fluid Mech. 230, 144.CrossRefGoogle Scholar
Fan, D., Xu, J., Yao, M.X. & Hickey, J.-P. 2019 On the detection of internal interfacial layers in turbulent flows. J. Fluid Mech. 872, 198217.CrossRefGoogle Scholar
Fernholz, H.H. & Finleyt, P.J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32, 245311.CrossRefGoogle Scholar
Fiedler, H. & Head, M.R. 1966 Intermittency measurements in the turbulent boundary layer. J. Fluid Mech. 25, 719735.CrossRefGoogle Scholar
Fitzhugh, R. 1983 Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis. Math. Biosci. 64, 7589.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence, the Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191.CrossRefGoogle Scholar
Gauding, M., Bode, M., Brahami, Y., Varea, É. & Danaila, L. 2021 Self-similarity of turbulent jet flows with internal and external intermittency. J. Fluid Mech. 919, A41.CrossRefGoogle Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 10651081.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Reeh, A. 1997 Application of extended self-similarity in turbulence. Phys. Rev. E 56, 54735478.CrossRefGoogle Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521.CrossRefGoogle Scholar
Hedleyt, T.B. & Keffer, J.F. 1974 Some turbulent/non-turbulent properties of the outer intermittent region of a boundary layer. J. Fluid Mech. 64, 645–678.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $R{e_\tau } = \textrm{2003}$. Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hu, R., Yang, X.I.A. & Zheng, X. 2019 Wall-attached and wall-detached eddies in wall-bounded turbulent flows. J. Fluid Mech. 885, A30.Google Scholar
Hunt, J.C.R. & Fernholz, H. 1975 Wind-tunnel simulation of the atmospheric boundary layer: a report on Euromech 50. J. Fluid Mech. 70, 543559.CrossRefGoogle Scholar
Hutchins, N. 2014 Large-scale structures in high Reynolds number wall-bounded turbulence. In Progress in Turbulence V: Proceedings of the iTi Conference in Turbulence 2012 (ed. A. Talamelli, M. Oberlack & J. Peinke), pp. 75–83. Springer International Publishing.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. A, Math. Phys. Engng Sci. 365, 647664.Google ScholarPubMed
Hutchins, N., Nickels, T.B., Marusic, I. & Chong, M.S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103.CrossRefGoogle Scholar
Iacobello, G., Ridolfi, L. & Scarsoglio, S. 2021 Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks. J. Fluid Mech. 918, A13.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high–reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.CrossRefGoogle Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.CrossRefGoogle Scholar
Jiménez, J., Simens, M., Hoyas, S. & Mizuno, Y. 2008 Entry length requirements for direct simulations of turbulent boundary layers. Center for Turbulence Research, Annual Research Briefs 381–390.Google Scholar
Jiménez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65–90.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417.CrossRefGoogle Scholar
Klebanoff, P.S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient, NASA, Washington, DC.Google Scholar
Klebanoff, P.S. & Diehl, Z.W. 1951 Some features of artificially thickened fully developed turbulent boundary layers with zero pressure gradient. Tech. Rep. 2475. DTIC Document.Google Scholar
Kovasznay, L.S.G., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283325.CrossRefGoogle Scholar
Kuo, A.Y.-S. & Corrsin, S. 1971 Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. J. Fluid Mech. 50, 285319.CrossRefGoogle Scholar
Kuznetsov, V.R., Praskovsky, A.A. & Sabelnikov, V.A. 1992 Fine-scale turbulence structure of intermittent hear flows. J. Fluid Mech. 243, 595–622.CrossRefGoogle Scholar
Kwon, Y.S., Hutchins, N. & Monty, J.P. 2016 On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J. Fluid Mech. 794, 516.CrossRefGoogle Scholar
Landau, L. & Lifshitz, E. 1963 Fluid Mechanics. Pergamon.Google Scholar
Li, M., Baars, W.J., Marusic, I. & Hutchins, N. 2023 Quantifying inner-outer interactions in noncanonical wall-bounded flows. Phys. Rev. Fluids 8, 084602.CrossRefGoogle Scholar
Ligrani, P.M. & Bradshaw, P. 1987 Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp. Fluids 5, 407417.CrossRefGoogle Scholar
Long, Y., Wu, D. & Wang, J. 2021 A novel and robust method for the turbulent/non-turbulent interface detection. Exp. Fluids 62, 138.CrossRefGoogle Scholar
Machlup, S. 1954 Noise in semiconductors: spectrum of a two-parameter random signal. J. Appl. Phys. 25, 341343.CrossRefGoogle Scholar
Marusic, I., Baars, W.J. & Hutchins, N. 2017 Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2, 100502.CrossRefGoogle Scholar
Marusic, I., Chauhan, K.A., Kulandaivelu, V. & Hutchins, N. 2015 Evolution of zero-pressure-gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379411.CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Chernyshenko, S.I. & Hutchins, N. 2013 Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163180.CrossRefGoogle Scholar
Meldi, M., Djenidi, L. & Antonia, R. 2018 Reynolds number effect on the velocity derivative flatness factor. J. Fluid Mech. 856, 426443.CrossRefGoogle Scholar
Mellado, J.P., Wang, L. & Peters, N. 2009 Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech. 626, 333365.CrossRefGoogle Scholar
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.CrossRefGoogle Scholar
Meneveau, C. & Sreenivasan, K.R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.CrossRefGoogle Scholar
Metzger, M.M. & Klewicki, J.C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13, 692701.CrossRefGoogle Scholar
Musker, A.J. 1979 Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J. 17, 655657.CrossRefGoogle Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518.CrossRefGoogle Scholar
Pearson, B.R. & Antonia, R.A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.CrossRefGoogle Scholar
Philip, J., Meneveau, C., de Silva, C.M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26, 015105.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Reuther, N. & Kähler, C.J. 2018 Evaluation of large-scale turbulent/non-turbulent interface detection methods for wall-bounded flows. Exp. Fluids 59, 121.CrossRefGoogle Scholar
Rodríguez-López, E., Bruce, P.J.K. & Buxton, O.R.H. 2015 A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile. Exp. Fluids 56, 68.CrossRefGoogle Scholar
Rodríguez-López, E., Bruce, P.J.K. & Buxton, O.R.H. 2016 a Near field development of artificially generated high Reynolds number turbulent boundary layers. Phys. Rev. Fluids 1, 074401.CrossRefGoogle Scholar
Rodríguez-López, E., Bruce, P.J.K. & Buxton, O.R.H. 2016 b On the formation mechanisms of artificially generated high reynolds number turbulent boundary layers. Boundary-Layer Meteorol. 160, 201224.CrossRefGoogle Scholar
Rodríguez-López, E., Bruce, P.J.K. & Buxton, O.R.H. 2017 a Experimental measurement of wall shear stress in strongly disrupted flows. J. Turbul. 18, 271290.CrossRefGoogle Scholar
Rodríguez-López, E., Bruce, P.J.K. & Buxton, O.R.H. 2017 b Flow characteristics and scaling past highly porous wall-mounted fences. Phys. Fluids 29, 075106.CrossRefGoogle Scholar
Sabelnikov, V.A., Lipatnikov, A.N., Nishiki, S. & Hasegawa, T. 2019 Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions. J. Fluid Mech. 867, 4576.CrossRefGoogle Scholar
Sanmiguel Vila, C., Vinuesa, R., Discetti, S., Ianiro, A., Schlatter, P. & Örlü, R. 2017 On the identification of well-behaved turbulent boundary layers. J. Fluid Mech. 822, 109138.CrossRefGoogle Scholar
Saxton-Fox, T. & McKeon, B.J. 2017 Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J. Fluid Mech. 826, R6.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 a Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 b Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22, 051704.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.CrossRefGoogle Scholar
Segalini, A., Örlü, R. & Alfredsson, P.H. 2013 Uncertainty analysis of the von Kármán constant. Exp. Fluids 54, 1460.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000. Phys. Fluids 25, 105102.CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.CrossRefGoogle Scholar
de Silva, C.M., Krug, D., Lohse, D. & Marusic, I. 2017 Universality of the energy-containing structures in wall-bounded turbulence. J. Fluid Mech. 823, 498510.CrossRefGoogle Scholar
de Silva, C.M., Marusic, I., Woodcock, J.D. & Meneveau, C. 2015 Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech. 769, 654686.CrossRefGoogle Scholar
de Silva, C.M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111, 044501.CrossRefGoogle ScholarPubMed
Smits, A.J. 2020 Some observations on Reynolds number scaling in wall-bounded flows. Phys. Rev. Fluids 5, 110514.CrossRefGoogle Scholar
Smits, A.J. & Marusic, I. 2013 Wall-bounded turbulence. Phys. Today 66, 2530.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Sreenivasan, K.R. & Meneveau, C. 1986 The fractal facets of turbulence. J. Fluid Mech. 173, 357386.CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A., Djenidi, L., Danaila, L. & Zhou, Y. 2018 Reappraisal of the velocity derivative flatness factor in various turbulent flows. J. Fluid Mech. 847, 244265.CrossRefGoogle Scholar
Tang, Z., Fan, Z., Chen, L. & Jiang, N. 2021 Outer-layer structure arrangements based on the large-scale zero-crossings at moderate Reynolds number. Phys. Fluids 33, 085121.CrossRefGoogle Scholar
Tang, Z. & Jiang, N. 2020 The effect of a synthetic input on small-scale intermittent bursting events in near-wall turbulence. Phys. Fluids 32, 015110.CrossRefGoogle Scholar
Tang, Z., Jiang, N., Zheng, X. & Wu, Y. 2016 Bursting process of large- and small-scale structures in turbulent boundary layer perturbed by a cylinder roughness element. Exp. Fluids 57, 79.CrossRefGoogle Scholar
Tang, Z., Jiang, N., Zhou, Q. & Lu, Z. 2024 Artificially thickened boundary layer turbulence due to trip wires of varying diameter. Phys. Rev. Fluids 9, 024606.CrossRefGoogle Scholar
Thiesset, F., Duret, B., Ménard, T., Dumouchel, C., Reveillon, J. & Demoulin, F.X. 2020 Liquid transport in scale space. J. Fluid Mech. 886, A4.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Wang, L., Pan, C., Wang, J. & Gao, Q. 2022 Statistical signatures of component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer. J. Fluid Mech. 944, A26.CrossRefGoogle Scholar
Wang, L.-H., Xu, C.-X., Sung, H.J. & Huang, W.-X. 2021 Wall-attached structures over a traveling wavy boundary: turbulent velocity fluctuations. Phys. Rev. Fluids 6, 034611.CrossRefGoogle Scholar
Wang, L.-P., Chen, S., Brasseur, J.G. & Wyngaard, J.C. 1996 Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech. 309, 113156.CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B. & Nagata, K. 2019 Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence. J. Fluid Mech. 875, 321344.CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B. & Nagata, K. 2020 Scale-by-scale kinetic energy budget near the turbulent/nonturbulent interface. Phys. Rev. Fluids 5, 124610.CrossRefGoogle Scholar
Xia, Z., Brethouwer, G. & Chen, S. 2018 High-order moments of streamwise fluctuations in a turbulent channel flow with spanwise rotation. Phys. Rev. Fluids 3, 022601.CrossRefGoogle Scholar
Yang, X.I.A., Marusic, I. & Meneveau, C. 2016 a Moment generating functions and scaling laws in the inertial layer of turbulent wall-bounded flows. J. Fluid Mech. 791, R2.CrossRefGoogle Scholar
Yang, X.I.A., Meneveau, C., Marusic, I. & Biferale, L. 2016 b Extended self-similarity in moment-generating-functions in wall-bounded turbulence at high Reynolds number. Phys. Rev. Fluids 1, 044405.CrossRefGoogle Scholar
Younes, K., Gibeau, B., Ghaemi, S. & Hickey, J.-P. 2021 A fuzzy cluster method for turbulent/non-turbulent interface detection. Exp. Fluids 62, 73.CrossRefGoogle Scholar