Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T15:07:53.468Z Has data issue: false hasContentIssue false

Scaling law of the second-order structure function over the entire sandstorm process

Published online by Cambridge University Press:  08 January 2024

Hongyou Liu
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Yanxiong Shi
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng*
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi'an 710071, PR China
*
Email address for correspondence: xjzheng@lzu.edu.cn

Abstract

This study reveals the competitive evolutionary process of the main driving factors in the early, middle and late stages of sandstorms, as shear turbulence becomes dominant and is then suppressed by enhanced thermal stability, based on quadrant analysis of the sand-laden turbulent wind field acquired from field observations over the entire sandstorm process. Moreover, the self-organized state of multiscale structures in the energy-containing region of the sand-laden turbulence is found to change significantly as the sandstorm develops. The logarithmic scaling law that governs the cumulative turbulent kinetic energy for the non-stationary flow in the early and late stages of the sandstorm is different from the existing theoretical formula. The corresponding rate of increase in the cumulative kinetic energy with increasing scale is much higher in these stages than in the middle stage of the sandstorm with steady flow. The change in self-organized state of turbulence is responsible for the flow acceleration and the thermal superimposed effect, rather than the addition of sand particles.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, S.A. & Cox, S.K. 1989 Surface weather observations of atmospheric dust over the southwest summer monsoon region. Meteorol. Atmos. Phys. 41, 1934.CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
An, S., Sin, H.H. & DuBow, M.S. 2015 Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea. Heredity 114, 460467.CrossRefGoogle ScholarPubMed
Ayet, A. & Katul, G.G. 2020 Scaling laws for the length scale of energy-containing eddies in a sheared and thermally stratified atmospheric surface layer. Geophys. Res. Lett. 47 (23), e2020GL089997.CrossRefGoogle Scholar
Azami, H., Sanei, S., Mohammadi, K. & Hassanpour, H. 2013 A hybrid evolutionary approach to segmentation of non-stationary signals. Digit. Signal Process. 23 (4), 11031114.CrossRefGoogle Scholar
Bailey, S.C.C. & Smits, A.J. 2010 Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 651, 339356.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365 (1852), 665681.CrossRefGoogle ScholarPubMed
Baltzer, J.R., Adrian, R.J. & Wu, X. 2013 Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech. 720, 236279.CrossRefGoogle Scholar
Banerjee, T., Katul, G.G., Salesky, S.T. & Chamecki, M. 2015 Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Q. J. R. Meteorol. Soc. 141 (690), 16991711.CrossRefGoogle Scholar
Bourassa, C. & Thomas, F.O. 2009 An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359404.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Brilouet, P.E., Durand, P., Canut, G. & Fourrié, N. 2020 Organized turbulence in a cold-air outbreak: evaluating a large-eddy simulation with respect to airborne measurements. Boundary-Layer Meteorol. 175, 5791.CrossRefGoogle Scholar
Businger, J.A. & Yaglom, A.M. 1971 Introduction to Obukhov's paper on “turbulence in an atmosphere with a non-uniform temperature”. Boundary-Layer Meteorol. 2, 36.CrossRefGoogle Scholar
Carper, M.A. & Porté-Agel, F. 2004 The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 5, N40.CrossRefGoogle Scholar
Cassisa, C., Simoens, S., Prinet, V. & Shao, L. 2010 Sub-grid physical optical flow for remote sensing of sandstorm. In 2010 IEEE International Geoscience and Remote Sensing Symposium, pp. 2230–2233. IEEE.CrossRefGoogle Scholar
Chamecki, M., Dias, N.L., Salesky, S.T. & Pan, Y. 2017 Scaling laws for the longitudinal structure function in the atmospheric surface layer. J. Atmos. Sci. 74 (4), 11271147.CrossRefGoogle Scholar
Chauhan, K., Hutchins, N., Marusic, I. & Monty, J. 2010 Two-point correlation statistics in the atmospheric surface layer. In Proceedings of 17th Australasian Fluid Mech Conference Paper 2010, Auckland, New Zealand.Google Scholar
Chauhan, K., Hutchins, N., Monty, J. & Marusic, I. 2013 Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorol. 147, 4150.CrossRefGoogle Scholar
Chen, J. & Xu, Y.L. 2004 On modelling of typhoon-induced nonstationary wind speed for tall buildings. Struct. Des. Tall Spec. Build. 13 (2), 145163.CrossRefGoogle Scholar
Cheng, X.L., Zeng, Q.C. & Hu, F. 2011 Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts. J. Geophys. Res.-Atmos. 116, D06101.CrossRefGoogle Scholar
Cheynet, E., Jakobsen, J.B. & Obhrai, C. 2017 Spectral characteristics of surface-layer turbulence in the north sea. Energy Procedia 137, 414427, 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind 2017.CrossRefGoogle Scholar
Chong, K.L., Huang, S.D., Kaczorowski, M. & Xia, K.Q. 2015 Condensation of coherent structures in turbulent flows. Phys. Rev. Lett. 115, 264503.CrossRefGoogle ScholarPubMed
Christensen, K.T. & Adrian, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Chunchuzov, I.P. 1994 On a possible generation mechanism for nonstationary mountain waves in the atmosphere. J. Atmos. Sci. 51 (15), 21962206.2.0.CO;2>CrossRefGoogle Scholar
Chung, D., Marusic, I., Monty, J.P., Vallikivi, M. & Smits, A.J. 2015 On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids 56, 141.CrossRefGoogle Scholar
Costantini, M., Hein, S., Henne, U., Klein, C., Koch, S., Schojda, L., Ondrus, V. & Schröder, W. 2016 Pressure gradient and nonadiabatic surface effects on boundary layer transition. AIAA J. 54 (11), 34653480.CrossRefGoogle Scholar
Dai, Y., Williams, I.N. & Qiu, S. 2021 Simulating the effects of surface energy partitioning on convective organization: case study and observations in the US Southern Great Plains. J. Geophys. Res.-Atmos. 126, e2020JD033821.CrossRefGoogle Scholar
Davidson, P.A., Krogstad, P.A. & Nickels, T.B. 2006 a A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18, 065112.CrossRefGoogle Scholar
Davidson, P.A., Nickels, T.B. & Krogstad, P.A. 2006 b The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.CrossRefGoogle Scholar
Ding, M.J., Nguyen, K.X., Liu, S.S., Otte, M.J. & Tong, C. 2018 Investigation of the pressure-strain-rate correlation and pressure fluctuations in convective and near neutral atmospheric surface layers. J. Fluid Mech. 854, 88120.CrossRefGoogle Scholar
Djuric, P.M., Kay, S.M. & Boudreaux-Bartels, G.F. 1992 Segmentation of nonstationary signals. In IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 161–164. IEEE Computer Society.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Emadzadeh, A., Chiew, Y.M. & Afzalimehr, H. 2010 Effect of accelerating and decelerating flows on incipient motion in sand bed streams. Adv. Water Resour. 33 (9), 10941104.CrossRefGoogle Scholar
Emes, M.J., Arjomandi, M., Kelso, R.M. & Ghanadi, F. 2019 Turbulence length scales in a low-roughness near-neutral atmospheric surface layer. J. Turbul. 20 (9), 545562.CrossRefGoogle Scholar
Falkovich, G. 2018 Fluid Mechanics, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Feigenwinter, C., Vogt, R. & Parlow, E. 1999 Vertical structure of selected turbulence characteristics above an urban canopy. Theor. Appl. Climatol. 62, 5163.CrossRefGoogle Scholar
Fenton, L.K., Geissler, P.E. & Haberle, R.M. 2007 Global warming and climate forcing by recent albedo changes on Mars. Nature 446, 646649.CrossRefGoogle ScholarPubMed
Fernholz, H.H. & Waenack, D. 1998 The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 1. the turbulent boundary layer. J. Fluid Mech. 359, 329356.CrossRefGoogle Scholar
Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B. & Munger, W. 2004 Post-Field Data Quality Control, pp. 181208. Kluwer Academic.Google Scholar
Frenzen, P. & Vogel, C.A. 1992 The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field. Boundary-Layer Meteorol. 60, 4976.CrossRefGoogle Scholar
Frisch, U. & Kolmogorov, A.N. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.CrossRefGoogle Scholar
Hassanpour, H., Shahiri, M. IEEE, 2007 Adaptive segmentation using wavelet transform. In 2007 International Conference on Electrical Engineering, pp. 1–5. IEEE.CrossRefGoogle Scholar
Heisel, M., Dasari, T., Liu, Y., Hong, J., Coletti, F. & Guala, M. 2018 The spatial structure of the logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers. J. Fluid Mech. 857, 704747.CrossRefGoogle Scholar
Heisel, M., Sullivan, P.P., Katul, G.G. & Chamecki, M. 2023 Turbulence organization and mean profile shapes in the stably stratified boundary layer: zones of uniform momentum and air temperature. Boundary-Layer Meteorol. 186, 533565.CrossRefGoogle Scholar
Helfer, K.C. & Nuijens, L. 2021 The morphology of simulated trade-wind convection and cold pools under wind shear. J. Geophys. Res.-Atmos. 126, e2021JD035148.CrossRefGoogle ScholarPubMed
Högström, U. 1988 Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol. 42, 5578.CrossRefGoogle Scholar
Högström, U., Hunt, J.C. & Smedman, A.S. 2002 Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol. 103, 101124.CrossRefGoogle Scholar
Hommema, S.E. & Adrian, R.J. 2003 Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol. 106, 147170.CrossRefGoogle Scholar
Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C. & Liu, H.H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. A 454, 903995.CrossRefGoogle Scholar
Huang, S.D., Kaczorowski, M., Ni, R. & Xia, K.Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.CrossRefGoogle ScholarPubMed
Hunt, J.C.R. & Morrison, J.F. 2000 Eddy structure in turbulent boundary layers. Eur. J. Mech. (B/Fluids) 19 (5), 673694.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145, 273306.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 647–64.CrossRefGoogle ScholarPubMed
Ichimiya, M., Nakamura, I. & Yamashita, S. 1998 Properties of a relaminarizing turbulent boundary layer under a favorable pressure gradient. Exp. Therm. Fluid Sci. 17 (1), 3748.CrossRefGoogle Scholar
Jeong, B., Bae, Y.H., Lee, D.S. & Kim, S.W. 1997 Biodegradable block copolymers as injectable drug-delivery systems. Nature 388, 860862.CrossRefGoogle ScholarPubMed
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Joshi, P., Liu, X.F. & Katz, J. 2011 Turbulence in accelerating boundary layers. In Proceedings of the ASME/JSME/KSME Joint Fluids Engineering Conference 2011, vol. 1, PTS A-D, pp. 3921–3932. ASME; JSME; KSME.CrossRefGoogle Scholar
Jung, S.Y. & Chung, Y.M. 2012 Large-eddy simulation of accelerated turbulent flow in a circular pipe. Intl J. Heat Fluid Flow 33 (1), 18.CrossRefGoogle Scholar
Kaimal, J.C., Wyngaard, J.C., Izumi, Y. & Coté, O.R. 1972 Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98 (417), 563589.Google Scholar
Kareem, A., Hu, L., Guo, Y.L. & Kwon, D.K. 2019 Generalized wind loading chain: time-frequency modeling framework for nonstationary wind effects on structures. J. Struct. Engng 145 (10), 04019092.CrossRefGoogle Scholar
Katul, G., Kuhn, G., Schieldge, J. & Hsieh, C.I. 1997 The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol. 83, 126.CrossRefGoogle Scholar
Katul, G.G., Ghannam, K., Bou-Zeid, E., Gerken, T. & Chamecki, M. 2018 Scaling and similarity of the anisotropic coherent eddies in near-surface atmospheric turbulence. J. Atmos. Sci. 75 (3), 943964.Google Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kim, S.W. & Park, S.U. 2003 Coherent structures near the surface in a strongly sheared convective boundary layer generated by large-eddy simulation. Boundary-Layer Meteorol. 106, 3560.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 75, 741773.CrossRefGoogle Scholar
Kok, J.F. 2010 Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: implications for dunes and dust storms. Phys. Rev. Lett. 104, 074502.CrossRefGoogle ScholarPubMed
Koralov, L. & Sinai, Y.G. 2007 Theory of Probability and Random Processes, 2nd edn. Springer.CrossRefGoogle Scholar
Lavielle, M. 1998 Optimal segmentation of random processes. IEEE Trans. Signal Process. 46 (5), 13651373.CrossRefGoogle Scholar
Li, B. & Neuman, C.M. 2012 Boundary-layer turbulence characteristics during aeolian saltation. Geophys. Res. Lett. 39 (11), L11402.CrossRefGoogle Scholar
Li, X.B. & Bo, T.L. 2019 An application of quadrant and octant analysis to the atmospheric surface layer. J. Wind Engng Ind. Aerodyn. 189, 110.CrossRefGoogle Scholar
Li, X.B., Hutchins, N., Zheng, X.J., Marusic, I. & Baars, W. 2022 Scale-dependent inclination angle of turbulent structures in stratified atmospheric surface layers. J. Fluid Mech. 942, A38.CrossRefGoogle Scholar
Li, X.L. & Zhang, H.S. 2012 Seasonal variations in dust concentration and dust emission observed over Horqin Sandy Land area in China from December 2010 to November 2011. Atmos. Environ. 61, 5665.CrossRefGoogle Scholar
Li, R.N., Zheng, H., O'Connor, P., Xu, H.S., Li, Y.K., Lu, F., Robinson, B.E., Ouyang, Z.Y., Hai, Y. & Daily, G.C. 2021 Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 7 (14), eabf8650.CrossRefGoogle ScholarPubMed
Liu, H.Y., Bo, T.L. & Liang, Y.R. 2017 The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys. Fluids 29 (3), 035104.CrossRefGoogle Scholar
Liu, H.Y., He, X.B. & Zheng, X.J. 2023 Amplitude modulation in particle-laden atmospheric surface layers. J. Fluid Mech. 957, A14.CrossRefGoogle Scholar
Liu, H.Y., Shi, Y.X. & Zheng, X.J. 2022 Evolution of turbulent kinetic energy during the entire sandstorm process. Atmos. Chem. Phys. 22 (13), 87878803.CrossRefGoogle Scholar
Liu, H.Y., Wang, G.H. & Zheng, X.J. 2018 Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. J. Fluid Mech. 861, 585607.CrossRefGoogle Scholar
Liu, H.Y. & Zheng, X.J. 2021 Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms. Flow 1, E5.CrossRefGoogle Scholar
Lotfy, E.R., Abbas, A.A., Zaki, S.A. & Harun, Z. 2019 Characteristics of turbulent coherent structures in atmospheric flow under different shear-buoyancy conditions. Boundary-Layer Meteorol. 173, 115141.CrossRefGoogle Scholar
Mahrt, L., Nilsson, E., Rutgersson, A. & Pettersson, H. 2020 Sea-surface stress driven by small-scale nonstationary winds. Boundary-Layer Meteorol. 176, 1333.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1), 4974.CrossRefGoogle Scholar
Metzger, M., McKeon, B.J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. A 365, 859876.CrossRefGoogle ScholarPubMed
Monin, A.S. & Obukhov, A.M. 1954 Turbulent mixing in the atmospheric surface layer. Tr. Inst. Theor. Geofiz 24, 163187.Google Scholar
Nagano, Y. & Tagawa, M. 1988 Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157185.CrossRefGoogle Scholar
Nguyen, K.X., Horst, T.W., Oncley, S.P. & Tong, C. 2013 Measurements of the budgets of the subgrid-scale stress and temperature flux in a convective atmospheric surface layer. J. Fluid Mech. 729, 388422.CrossRefGoogle Scholar
Nilsson, E., Lohou, F., Lothon, M., Pardyjak, E., Mahrt, L. & Darbieu, C. 2019 Turbulence kinetic energy budget during the afternoon transition—part 1: observed surface TKE budget and boundary layer description for 10 intensive observation period days. Atmos. Chem. Phys. 16 (14), 88498872.CrossRefGoogle Scholar
Obukhov, A.M. 1946 Turbulence in an atmosphere with temperature inhomogeneities. Tr. Inst. Theor. Geofiz 1, 95115.Google Scholar
Perry, A.E. & Chong, M.S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Piomelli, U., Balaras, E. & Pascarelli, A. 2000 Turbulent structures in accelerating boundary layers. J. Turbul. 1, N1.CrossRefGoogle Scholar
Piomelli, U. & Yuan, J.L. 2013 Numerical simulations of spatially developing, accelerating boundary layers. Phys. Fluids 25 (10), 101304.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rao, K.G. & Narasimha, R. 2006 Heat-flux scaling for weakly forced turbulent convection in the atmosphere. J. Fluid Mech. 547, 115135.CrossRefGoogle Scholar
Richardson, L.F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Salesky, S.T. & Anderson, W. 2018 Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J. Fluid Mech. 856, 135168.CrossRefGoogle Scholar
Salesky, S.T., Katul, G.G. & Chamecki, M. 2013 Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows. Phys. Fluids 25 (10), 105101.CrossRefGoogle Scholar
Schulz, E.W. & Sanderson, B.G. 2004 Stationarity of turbulence in light winds during the maritime continent thunderstorm experiment. Boundary-Layer Meteorol. 111, 523541.CrossRefGoogle Scholar
She, Z.S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.CrossRefGoogle ScholarPubMed
de Silva, C.M., Marusic, I., Woodcock, J.D. & Meneveau, C. 2015 Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech. 769, 654686.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.CrossRefGoogle Scholar
Sun, C., Xi, H.D. & Xia, K.Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Sun, C., Zhou, Q. & Xia, K.Q. 2006 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 97, 074502.Google Scholar
Talamelli, A., Fornaciari, N., Westin, J.K.A. & Alfredsson, P.H. 2002 Experimental investigation of streaky structures in a relaminarizing boundary layer. J. Turbul. 3 (1), N18.CrossRefGoogle Scholar
Tamura, Y., Kawai, H., Uematsu, Y., Marukawa, H., Fujii, K. & Taniike, Y. 1996 Wind load and wind-induced response estimations in the recommendations for loads on buildings, AIJ 1993. Engng Struct. 18 (6), 399411.CrossRefGoogle Scholar
Thomas, D.S.G., Knight, M. & Wiggs, G.F.S. 2005 Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435, 12181221.CrossRefGoogle ScholarPubMed
Tong, C. & Ding, M. 2020 Velocity-defect laws, log law and logarithmic friction law in the convective atmospheric boundary layer. J. Fluid Mech. 883, A36.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tracy, C.R., Welch, W.R. & Porter, W.P. 1980 Properties of Air: A Manual for Use in Biophysical Ecology, 3rd edn. The University of Wisconsin.Google Scholar
Volino, R.J. 2020 Non-equilibrium development in turbulent boundary layers with changing pressure gradients. J. Fluid Mech. 897, A2.CrossRefGoogle Scholar
Wallace, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48 (1), 131158.CrossRefGoogle Scholar
Wang, G.H., Gu, H.H. & Zheng, X.J. 2020 Large scale structures of turbulent flows in the atmospheric surface layer with and without sand. Phys. Fluids 32 (10), 106604.CrossRefGoogle Scholar
Wang, G.H. & Zheng, X.J. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wang, H., Wu, T., Tao, T.Y., Li, A.Q. & Kareem, A. 2016 Measurements and analysis of non-stationary wind characteristics at Sutong Bridge in Typhoon Damrey. J. Wind Engng Ind. Aerodyn. 151, 100106.CrossRefGoogle Scholar
Wang, L.P. & Stock, D.E. 1993 Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50 (13), 18971913.2.0.CO;2>CrossRefGoogle Scholar
Wang, S.Q., Zhao, L., Cao, S.Y., Zhang, Y.F., Yin, F. & Ge, Y.J. 2018 A comparison study on gust factor considering non-stationary effects under typhoon and monsoon conditions. Adv. Struct. Engng 21 (12), 18531864.CrossRefGoogle Scholar
Wilczak, J.M., Oncley, S.P. & Stage, S.A. 2001 Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99, 127150.CrossRefGoogle Scholar
Wyngaard, J.C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24 (1), 205233.CrossRefGoogle Scholar
Wyngaard, J.C. & Coté, O.R. 1971 The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci. 28 (2), 190201.2.0.CO;2>CrossRefGoogle Scholar
Xie, J.H., de Silva, C., Baidya, R., Yang, X.I.A. & Hu, R. 2021 Third-order structure function in the logarithmic layer of boundary-layer turbulence. Phys. Rev. Fluids 6, 074602.CrossRefGoogle Scholar
Xie, Y.C., Ding, G.Y. & Xia, K.Q. 2018 Flow topology transition via global bifurcation in thermally driven turbulence. Phys. Rev. Lett. 120, 214501.CrossRefGoogle ScholarPubMed
Xu, C.Q., Guan, Q.Y., Lin, J.K., Luo, H.P., Yang, L.Q., Tan, Z., Wang, Q.Z., Wang, N. & Tian, J. 2020 Spatiotemporal variations and driving factors of dust storm events in northern China based on high-temporal-resolution analysis of meteorological data (1960–2007). Environ. Pollut. 260, 114084.CrossRefGoogle ScholarPubMed
Yadav, A.K., Raman, S. & Sharan, M. 1996 Surface layer turbulence spectra and dissipation rates during low winds in tropics. Boundary-Layer Meteorol. 79, 205223.CrossRefGoogle Scholar
Yang, X.I.A., Baidya, R., Johnson, P., Marusic, I. & Meneveau, C. 2017 Structure function tensor scaling in the logarithmic region derived from the attached eddy model of wall-bounded turbulent flows. Phys. Rev. Fluids 2, 064602.CrossRefGoogle Scholar
Zhang, H.S., Zhu, H., Peng, Y., Kang, L., Chen, J. & Park, S.U. 2008 Experiment on dust flux during duststorm periods over desert area. Acta Meteorol. Sin. 22, 239247.Google Scholar
Zhao, J.H., Long, X., Zhang, F., Yang, Y.L., Liu, S.Y. & Liang, Y. 2020 The role of turbulent coherent structure in sand/dust emissions in a sand/dust storm of the middle China-Mongolia regime. Chin. J. Geophys. 63, 39673980.Google Scholar
Zhou, Q., Sun, C. & Xia, K.Q. 2007 Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 074501.CrossRefGoogle ScholarPubMed
Zou, Z., Li, S., Huang, J., Li, P., Song, J., Zhang, J.A. & Wan, Z. 2020 Atmospheric boundary layer turbulence in the presence of swell: turbulent kinetic energy budget, Monin–Obukhov similarity theory, and inertial dissipation method. J. Phys. Oceanogr. 50 (5), 12131225.CrossRefGoogle Scholar