Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T20:17:15.772Z Has data issue: false hasContentIssue false

Dual scaling and the n-thirds law in grid turbulence

Published online by Cambridge University Press:  16 November 2023

S.L. Tang*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, PR China
R.A. Antonia
Affiliation:
Discipline of Mechanical Engineering, College of Engineering, Science and Environment, University of Newcastle, Newcastle 2308, NSW, Australia
L. Djenidi
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology – Bombay, Powai, Mumbai 400076, India School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide 5005, WA, Australia
*
Email address for correspondence: shunlin.tang88@gmail.com

Abstract

A dual scaling of the turbulent longitudinal velocity structure function $\overline {{(\delta u)}^n}$, i.e. a scaling based on the Kolmogorov scales ($u_K$, $\eta$) and another based on ($u'$, $L$) representative of the large scale motion, is examined in the context of both the Kármán–Howarth equation and experimental grid turbulence data over a significant range of the Taylor microscale Reynolds number $Re_\lambda$. As $Re_\lambda$ increases, the scaling based on ($u'$, $L$) extends to increasingly smaller values of $r/L$ while the scaling based on ($u_K$, $\eta$) extends to increasingly larger values of $r/\eta$. The implication is that both scalings should eventually overlap in the so-called inertial range as $Re_\lambda$ continues to increase, thus leading to a power-law relation $\overline {{(\delta u)}^n} \sim r^{n/3}$ when the inertial range is rigorously established. The latter is likely to occur only when $Re_\lambda \to \infty$. The use of an empirical model for $\overline {{(\delta u)}^n}$, which complies with $\overline {{(\delta u)}^n} \sim r^{n/3}$ as $Re_\lambda \to \infty$, shows that the finite Reynolds number effect may differ between even- and odd-orders of $\overline {{(\delta u)}^n}$. This suggests that different values of $Re_\lambda$ may be required between even and odd values of $n$ for compliance with $\overline {{(\delta u)}^n} \sim r^{n/3}$. The model describes adequately the dependence on $Re_\lambda$ of the available experimental data for $\overline {{(\delta u)}^n}$ and supports indirectly the extrapolation of these data to infinitely large $Re_\lambda$.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R.A., Tang, S.L., Djenidi, L. & Zhou, Y. 2019 Finite Reynolds number effect and the 4/5 law. Phys. Rev. Fluids 4 (8), 084602.10.1103/PhysRevFluids.4.084602CrossRefGoogle Scholar
Antonia, R.A. & Burattini, P. 2006 Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.10.1017/S0022112005008438CrossRefGoogle Scholar
Antonia, R.A., Djenidi, L. & Danaila, L. 2014 Collapse of the turbulent dissipation range on Kolmogorov scales. Phys. Fluids 26, 045105.10.1063/1.4869305CrossRefGoogle Scholar
Antonia, R.A., Djenidi, L., Danaila, L. & Tang, S.L. 2017 Small scale turbulence and the finite Reynolds number effect. Phys. Fluids 29 (2), 020715.10.1063/1.4974323CrossRefGoogle Scholar
Antonia, R.A., Satyaprakash, B.R. & Hussain, A.K.M.F. 1980 Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23, 695700.10.1063/1.863055CrossRefGoogle Scholar
Antonia, R.A., Smalley, R.J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.10.1017/S0022112003004713CrossRefGoogle Scholar
Antonia, R.A., Zhou, T., Danaila, L. & Anselmet, F. 2000 Streamwise inhomogeneity of decaying grid turbulence. Phys. Fluids 12, 3086.10.1063/1.1314336CrossRefGoogle Scholar
Antonia, R.A., Zhou, T. & Zhu, Y. 1998 Three-component vorticity measurements in a turbulent grid flow. J. Fluid Mech. 374, 2957.10.1017/S0022112098002547CrossRefGoogle Scholar
Barenblatt, G.I. & Chorin, A.J. 1998 New perspectives in turbulence: scaling laws, asymptotics, and intermittency. SIAM Rev. 40 (2), 265291.10.1137/S0036144597320047CrossRefGoogle Scholar
Barenblatt, G.I. & Goldenfeld, N. 1995 Does fully developed turbulence exist? Reynolds number independence versus asymptotic covariance. Phys. Fluids 7, 30783082.10.1063/1.868685CrossRefGoogle Scholar
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, 2932.10.1103/PhysRevE.48.R29CrossRefGoogle ScholarPubMed
Birnir, B. 2019 The turbulence problem. Nonlinear Stud. 26, 767781.Google Scholar
Bodenschatz, E., Bewley, G.P., Nobach, H., Sinhuber, M. & Xu, H. 2014 Variable density turbulence tunnel facility. Rev. Sci. Instrum. 85 (9), 093908.10.1063/1.4896138CrossRefGoogle ScholarPubMed
Burattini, P., Antonia, R.A. & Danaila, L. 2005 a Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101.10.1063/1.1833414CrossRefGoogle Scholar
Burattini, P., Lavoie, P. & Antonia, R. 2005 b On the normalized turbulent energy dissipation rate. Phys. Fluids 17, 98103.10.1063/1.2055529CrossRefGoogle Scholar
Cao, N., Chen, S. & Doolen, G.D. 1999 Statistics and structures of pressure in isotropic turbulence. Phys. Fluids 11, 22352250.10.1063/1.870085CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.10.1017/S0022112066000338CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 48 (2), 273337.10.1017/S0022112071001599CrossRefGoogle Scholar
Danaila, L., Anselmet, F. & Antonia, R.A. 2002 An overview of the effect of large-scale inhomogeneities on small-scale turbulence. Phys. Fluids 14, 24752482.10.1063/1.1476300CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R.A. 1999 A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence. J. Fluid Mech. 391, 359372.10.1017/S0022112099005418CrossRefGoogle Scholar
Dhruva, B. 2000 An Experimental Study of High Reynolds Number Turbulence in the Atmosphere. PhD thesis, Yale University.Google Scholar
Dickey, T.D. & Mellor, G.L. 1979 The Kolmogoroff $r^ 2/3$ law. Phys. Fluids 22, 10291032.10.1063/1.862707CrossRefGoogle Scholar
Djenidi, L., Antonia, R.A. & Tang, S.L. 2019 Scale invariance in finite Reynolds number homogeneous isotropic turbulence. J. Fluid Mech. 864, 244272.10.1017/jfm.2019.28CrossRefGoogle Scholar
Djenidi, L. & Antonia, R.A. 2012 A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate. Exp. Fluids 53, 10051013.10.1007/s00348-012-1337-xCrossRefGoogle Scholar
Djenidi, L. & Antonia, R.A. 2015 A general self-preservation analysis for decaying homogeneous isotropic turbulence. J. Fluid Mech. 773, 345365.10.1017/jfm.2015.250CrossRefGoogle Scholar
Djenidi, L., Antonia, R.A. & Tang, S.L. 2022 Scaling of velocity structure functions in isotropic turbulence. In Proceedings 23rd Australasian Fluid Mechanics Conference, Sydney, Australia.Google Scholar
Djenidi, L., Antonia, R.A. & Tang, S.L. 2023 Scaling of turbulent velocity structure functions: plausibility constraints. J. Fluid Mech. 965, A14.10.1017/jfm.2023.416CrossRefGoogle Scholar
Donzis, D.A., Sreenivasan, K.R. & Yeung, P.K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.10.1017/S0022112005004039CrossRefGoogle Scholar
Gamard, S. & George, W.K. 2000 Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul. Combust. 63, 443477.10.1023/A:1009988321057CrossRefGoogle Scholar
George, W.K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. W.K. George & R. Arndt), pp. 39–73. Hemisphere.Google Scholar
George, W.K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 14921509.10.1063/1.858423CrossRefGoogle Scholar
George, W.K. 1994 Some new ideas for similarity of turbulent shear flows. In Proceedings of Turbulence, Heat and Mass Transfer Symposium Lisbon, Portugal (ed. K. Hanjalic & J. Pereira), pp. 24–49. Begell House.Google Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 10651081.10.1063/1.1448296CrossRefGoogle Scholar
Gylfason, A., Ayyalasomayajula, S. & Warhaft, Z. 2004 Intermittency, pressure and acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J. Fluid Mech. 501, 213229.10.1017/S002211200300747XCrossRefGoogle Scholar
He, G.W., Jin, G.D. & Yang, Y. 2017 Space–time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49, 5170.10.1146/annurev-fluid-010816-060309CrossRefGoogle Scholar
Hill, R.J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.10.1017/S0022112001003949CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–80.10.1146/annurev.fluid.010908.165203CrossRefGoogle Scholar
Ishihara, T. & Kaneda, Y. 2002 High resolution DNS of incompressible homogeneous forced turbulence: time dependence of the statistics. In Proceedings of the International Workshop on Statistical Theories and Computational Approaches to Turbulence (ed. Y. Kaneda & T. Gotoh), pp. 177–188. Springer.10.1007/978-4-431-67002-5_11CrossRefGoogle Scholar
Iyer, K.P., Sreenivasan, K.R. & Yeung, P.K. 2020 Scaling exponents saturate in three-dimensional isotropic turbulence. Phys. Rev. Fluids 5 (5), 054605.10.1103/PhysRevFluids.5.054605CrossRefGoogle Scholar
Jimenez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.10.1017/S0022112093002393CrossRefGoogle Scholar
Kaminsky, J., Birnir, B., Bewley, G.P. & Sinhuber, M. 2020 Reynolds number dependence of the structure functions in homogeneous turbulence. J. Nonlinear Sci. 30 (3), 10811114.10.1007/s00332-019-09602-yCrossRefGoogle Scholar
Von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192215.10.1098/rspa.1938.0013CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 299–303 (see also Proc. R. Soc. Lond. A 434, 9–13).Google Scholar
Kolmogorov, A.N. 1941 b Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 19–21 (see also Proc. R. Soc. Lond. A (1991), 434, 15–17).Google Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.10.1017/S0022112062000518CrossRefGoogle Scholar
Kurien, S. & Sreenivasan, K.R. 2000 Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence. Phys. Rev. E 62, 22062212.10.1103/PhysRevE.62.2206CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics: Vol 6 of course of theoretical physics, Second English Edition, Revised. Pergamon.Google Scholar
Larssen, J.V. & Devenport, W.J. 2011 On the generation of large-scale homogeneous turbulence. Exp. Fluids 50, 12071223.10.1007/s00348-010-0974-1CrossRefGoogle Scholar
Lavoie, P., Djenidi, L. & Antonia, R.A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.10.1017/S0022112007006763CrossRefGoogle Scholar
Lee, S.K., Djenidi, L., Antonia, R.A. & Danaila, L. 2013 On the destruction coefficients for slightly heated decaying grid turbulence. Intl J. Heat Fluid Flow 43, 129136.10.1016/j.ijheatfluidflow.2013.03.009CrossRefGoogle Scholar
Lundgren, T.S. 2002 Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids 14 (2), 638642.10.1063/1.1429965CrossRefGoogle Scholar
Lundgren, T.S. 2003 Kolmogorov turbulence by matched asymptotic expansions. Phys. Fluids 15 (4), 10741081.10.1063/1.1558332CrossRefGoogle Scholar
Malecot, Y. 1998 Intermittence en turbulence 3D: statistiques de la vitesse et de la vorticité. PhD thesis, University of Grenoble.Google Scholar
McComb, W.D., Yoffe, S.R., Linkmann, M.F. & Berera, A. 2014 Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence. Phys. Rev. E 90 (5), 053010.10.1103/PhysRevE.90.053010CrossRefGoogle ScholarPubMed
McComb, W.D., Berera, A., Yoffe, S.R. & Linkmann, M.F. 2015 Energy transfer and dissipation in forced isotropic turbulence. Phys. Rev. E 91, 043013.10.1103/PhysRevE.91.043013CrossRefGoogle ScholarPubMed
McKeon, B.J. & Morrison, J.F. 2007 Asymptotic scaling in turbulent pipe flow. Phil. Trans. R. Soc. A 365 (1852), 771787.10.1098/rsta.2006.1945CrossRefGoogle ScholarPubMed
Meldi, M., Djenidi, L. & Antonia, R.A. 2021 Sensitivity analysis of the second and third-order velocity structure functions to the Reynolds number in decaying and forced isotropic turbulence using the EDQNM model. Eur. J. Mech. (B/Fluids) 88, 229242.10.1016/j.euromechflu.2021.04.003CrossRefGoogle Scholar
Meldi, M. & Vassilicos, J.C. 2021 Analysis of Lundgren's matched asymptotic expansion approach to the Kármán-Howarth equation using the eddy damped quasi-normal Markovian turbulence closure. Phys. Rev. Fluids 6, 064602.10.1103/PhysRevFluids.6.064602CrossRefGoogle Scholar
Mi, J., Xu, M. & Zhou, T. 2013 Reynolds number influence on statistical behaviors of turbulence in a circular free jet. Phys. Fluids 25, 075101.10.1063/1.4811403CrossRefGoogle Scholar
Millikan, C.B. 1939 A critical discussion of turbulent flows in channels and tubes. In Proceedings of the 5th International Congress on Applied Mechanics (ed. J.P. Den Hartog & H. Peters), pp. 386–392. Wiley.Google Scholar
Monin, A.S. & Yaglom, A.M. 2007 Statistical Fluid Dynamics, vol. 2. MIT.Google Scholar
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.10.1017/S0022112096007562CrossRefGoogle Scholar
Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high-Péclet-number grid turbulence. J. Fluid Mech. 358, 135175.10.1017/S0022112097008161CrossRefGoogle Scholar
Obligado, M. & Vassilicos, J.C. 2019 The non-equilibrium part of the inertial range in decaying homogeneous turbulence. Europhys. Lett. 127, 64004.10.1209/0295-5075/127/64004CrossRefGoogle Scholar
Oboukhov, A.M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13 (1), 7781.10.1017/S0022112062000506CrossRefGoogle Scholar
Obukhov, A.M. 1941 On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32, 2224.Google Scholar
Pearson, B.R. & Antonia, R.A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.10.1017/S0022112001005511CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531CrossRefGoogle Scholar
Qian, J. 1997 Inertial range and the finite Reynolds number effect of turbulence. Phys. Rev. E 55, 337342.10.1103/PhysRevE.55.337CrossRefGoogle Scholar
Qian, J. 1999 Slow decay of the finite Reynolds number effect of turbulence. Phys. Rev. E 60, 3409.10.1103/PhysRevE.60.3409CrossRefGoogle ScholarPubMed
Qian, J. 2000 Closure approach to high-order structure functions of turbulence. Phys. Rev. Lett. 84, 646649.10.1103/PhysRevLett.84.646CrossRefGoogle ScholarPubMed
Qian, J. 2001 Quasi-closure and scaling of turbulence. Intl J. Mod. Phys. B 15, 10851116.10.1142/S0217979201004514CrossRefGoogle Scholar
Saddoughi, S.G. & Veeravalli, S.V. 1994 Local isotropy of turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.10.1017/S0022112094001370CrossRefGoogle Scholar
Saffman, P.G. 1967 Note on the decay of homogeneous turbulence. Phys. Fluids 10, 13491352.10.1063/1.1762284CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics. Springer.10.1007/978-3-319-73162-9CrossRefGoogle Scholar
She, Z.S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72 (3), 336.10.1103/PhysRevLett.72.336CrossRefGoogle ScholarPubMed
Sinhuber, M., Bewley, G.P. & Bodenschatz, E. 2017 Dissipative effects on inertial-range statistics at high Reynolds numbers. Phys. Rev. Lett. 119 (13), 134502.10.1103/PhysRevLett.119.134502CrossRefGoogle ScholarPubMed
Sinhuber, M., Bodenschatz, E. & Bewley, G.P. 2015 Decay of turbulence at high Reynolds numbers. Phys. Rev. Lett. 114 (3), 034501.10.1103/PhysRevLett.114.034501CrossRefGoogle ScholarPubMed
Speziale, C.G. & Bernard, P.S. 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.10.1017/S0022112092002180CrossRefGoogle Scholar
Sreenivasan, K. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.10.1146/annurev.fluid.29.1.435CrossRefGoogle Scholar
Sreenivasan, K.R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27, 10481051.10.1063/1.864731CrossRefGoogle Scholar
Stolovitzky, G., Sreenivasan, K.R. & Juneja, A. 1993 Scaling functions and scaling exponents in turbulence. Phys. Rev. E 48 (5), R3217R3220.10.1103/PhysRevE.48.R3217CrossRefGoogle ScholarPubMed
Tang, S.L., Antonia, R.A., Djenidi, L., Danaila, L. & Zhou, Y. 2017 Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions. J. Fluid Mech. 820, 341369.10.1017/jfm.2017.218CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A., Djenidi, L. & Zhou, Y. 2020 Scaling of the turbulent energy dissipation correlation function. J. Fluid Mech. 891, A26.10.1017/jfm.2020.171CrossRefGoogle Scholar
Tchoufag, J., Sagaut, P. & Cambon, C. 2012 Spectral approach to finite Reynolds number effects on Kolmogorov's 4/5 law in isotropic turbulence. Phys. Fluids 24 (1), 015107.10.1063/1.3678334CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tsuji, Y. 2009 High-Reynolds-number experiments: the challenge of understanding universality in turbulence. Fluid Dyn. Res. 41, 064003.10.1088/0169-5983/41/6/064003CrossRefGoogle Scholar
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.10.1146/annurev-fluid-010814-014637CrossRefGoogle Scholar
Wang, L.-P., Chen, S., Brasseur, J.G. & Wyngaard, J.C. 1996 Examination of hypotheses in Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech. 309, 113156.10.1017/S0022112096001589CrossRefGoogle Scholar
Yeung, P.K. & Brasseur, J.G. 1991 The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales. Phys. Fluids 3, 884897.10.1063/1.857966CrossRefGoogle Scholar
Yeung, P.K. & Zhou, Y. 1997 Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E 56, 17461752.10.1103/PhysRevE.56.1746CrossRefGoogle Scholar
Zhou, T. & Antonia, R.A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.10.1017/S0022112099007296CrossRefGoogle Scholar