Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T15:26:04.268Z Has data issue: false hasContentIssue false

Turbulent cascade in fully developed turbulent channel flow

Published online by Cambridge University Press:  21 July 2023

A. Apostolidis
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, F-59000 Lille, France
J.P. Laval
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, F-59000 Lille, France
J.C. Vassilicos*
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, F-59000 Lille, France
*
Email address for correspondence: john-christos.vassilicos@centralelille.fr

Abstract

We show that Kolmogorov scale-by-scale equilibrium in the intermediate layer of a fully developed turbulent channel flow is only achieved asymptotically around the Taylor length and, therefore, not in an inertial range. Furthermore, we analyse scale-by-scale turbulence production and interscale turbulence energy transfer in terms of alignments/anti-alignments of fluctuating velocities, straining/compressive relative motions, forward/inverse interscale transfer/cascade and homogeneous/non-homogeneous interscale transfer rate contributions. We also propose leading order scalings for second- and third-order two-point statistics, including the extremum interscale turbulence energy transfer rate and a second-order anisotropic structure function, which acts as a scale-by-scale Reynolds shear stress and determines the scale-by-scale (two-point) turbulence production rate.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

del Álamo, J.C., Jiménez, J., Zandonade, P. & Moser, R.D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J. Fluid Mech. 896, A16.CrossRefGoogle Scholar
Apostolidis, A., Laval, J.-P. & Vassilicos, J.C. 2022 Scalings of turbulence dissipation in space and time for turbulent channel flow. J. Fluid Mech. 946, A41.CrossRefGoogle Scholar
Batchelor, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bautista, J.C.C., Ebadi, A., White, C.M., Chini, G.P. & Klewicki, J.C. 2019 A uniform momentum zone–vortical fissure model of the turbulent boundary layer. J. Fluid Mech. 858, 609633.CrossRefGoogle Scholar
Chen, J.G. & Vassilicos, J.C. 2022 Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence. J. Fluid Mech. 938, A7.CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Cimarelli, A. & De Angelis, E. 2012 Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids 24 (1), 015102.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in turbulent channel flows. J. Fluid Mech. 715, 436451.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Jimenez, J. & Casciola, C.M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417436.CrossRefGoogle Scholar
Cole, J.D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell Publishing Company.Google Scholar
Dallas, V., Vassilicos, J.C. & Hewitt, G.F. 2009 Stagnation point von Kármán coefficient. Phys. Rev. E 80 (4), 046306.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gatti, D., Remigi, A., Chiarini, A., Cimarelli, A. & Quadrio, M. 2019 An efficient numerical method for the generalised Kolmogorov equation. J. Turbul. 20 (8), 457480.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2016 Unsteady turbulence cascades. Phys. Rev. E 94 (5), 053108.CrossRefGoogle ScholarPubMed
Hill, R.J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.CrossRefGoogle Scholar
Hill, R.J. 2002 Exact second-order structure-function relationships. J. Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Hinch, E.J. 1991 Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Kline, S.J. & Robinson, S.K. 1990 Quasi-coherent structures in the turbulent boundary layer. I-Status report on a community-wide summary of the data. In Near-Wall Turbulence, pp. 200–217. Hemisphere Publishing Corporation, New York.Google Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Re. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Lesieur, M. 1997 Turbulence in Fluids. Fluid Mechanics and its Applications, vol. 40. Springer.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.CrossRefGoogle Scholar
Lundgren, T.S. 2002 Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids 14 (2), 6.CrossRefGoogle Scholar
Marati, N., Casciola, C.M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Meldi, M. & Vassilicos, J.C. 2021 Analysis of Lundgren's matched asymptotic expansion approach to the Kármán–Howarth equation using the eddy damped quasinormal Markovian turbulence closure. Phys. Rev. Fluids 6 (6), 064602.CrossRefGoogle Scholar
Obligado, M. & Vassilicos, J.C. 2019 The non-equilibrium part of the inertial range in decaying homogeneous turbulence. Europhys. Lett. 127 (6), 64004.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics. Springer.CrossRefGoogle Scholar
Sreenivasan, K.R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27 (5), 10481051.CrossRefGoogle Scholar
Steiros, K. 2022 Balanced nonstationary turbulence. Phys. Rev. E 105 (3), 035109.CrossRefGoogle ScholarPubMed
Taylor, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 421444.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Van Dyke, M.D. 1964 Perturbation Methods in Fluid Mechanics. Academic Press.Google Scholar
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.CrossRefGoogle Scholar
Vassilicos, J.C., Laval, J.-P., Foucaut, J.-M. & Stanislas, M. 2015 The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow. J. Fluid Mech. 774, 324341.CrossRefGoogle Scholar
Wallace, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48 (1), 131158.CrossRefGoogle Scholar
Yuvaraj, R. 2022 Analysis of energy cascade in wall-bounded turbulent flows. PhD thesis, Centrale Lille Institut.Google Scholar
Zhou, Y. & Vassilicos, J.C. 2020 Energy cascade at the turbulent/nonturbulent interface. Phys. Rev. Fluids 5, 064604.CrossRefGoogle Scholar
Zimmerman, S.J., Antonia, R.A., Djenidi, L., Philip, J. & Klewicki, J.C. 2022 Approach to the 4/3 law for turbulent pipe and channel flows examined through a reformulated scale-by-scale energy budget. J. Fluid Mech. 931, A28.CrossRefGoogle Scholar