Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-08T01:52:40.339Z Has data issue: false hasContentIssue false

Impact of Flood Due to Typhoon Hagibis on Cardiovascular and Cerebrovascular Events in the Disaster Area of Nagano City: A Sub-Analysis Using Data From the SAVE Trial

Published online by Cambridge University Press:  15 March 2022

Toshinori Komatsu*
Affiliation:
Division of Cardiology, Nagano Municipal Hospital, Nagano, Japan Division of Cardiology, Nagano Red Cross Hospital, Nagano, Japan
Takashi Miura
Affiliation:
Division of Cardiology, Nagano Municipal Hospital, Nagano, Japan
Daisuke Sunohara
Affiliation:
Division of Cardiology, Nagano Municipal Hospital, Nagano, Japan
Kumiko Yahikozawa
Affiliation:
Division of Cardiology, Shinonoi General Hospital, Nagano, Japan
Tomoyasu Momose
Affiliation:
Division of Cardiology, Nagano Matsushiro Hospital, Nagano, Japan
Tunesuke Kouno
Affiliation:
Division of Cardiology, Nagano Chuo Hospital, Nagano, Japan
Hirohiko Motoki
Affiliation:
Division of Cardiology, Shinshu University Hospital, Nagano, Japan
Tomoaki Mochidome
Affiliation:
Division of Cardiology, Nagano Municipal Hospital, Nagano, Japan
Toshio Kasai
Affiliation:
Division of Cardiology, Nagano Municipal Hospital, Nagano, Japan
Koichiro Kuwahara
Affiliation:
Division of Cardiology, Shinshu University Hospital, Nagano, Japan
Uichi Ikeda
Affiliation:
Division of Cardiology, Nagano Municipal Hospital, Nagano, Japan
*
Corresponding author: Toshinori Komatsu, Email: komatsu.toshinori@gmail.com.

Abstract

Objectives:

This study aimed to examine the effects of flooding due to Typhoon Hagibis on the incidence of cardiovascular/cerebrovascular events in Nagano City.

Methods:

The SAVE trial retrospectively enrolled 2426 patients hospitalized for cardiovascular/cerebrovascular disease in 5 hospitals in Nagano City from October 1 to December 31 in 2017 and 2018 (pre-disaster period) and in 2019 (post-disaster period). From these, 280 patients who were hospitalized in a district flooded in 2019 were recruited for the same period (October 12 to December 31) over the 3 years. The baseline characteristics of and the incidence of cardiovascular/cerebrovascular disease in cases from the flooded district in 2019 were compared with those of cases in the flooded district in 2017 and 2018.

Results:

The total number of patients with acute myocardial infarction did not differ significantly between the post- and pre-disaster periods. The incidence of unstable angina pectoris was significantly higher in 2019 (n = 4, 5.1%) than in 2017 and 2018 (n = 0, 0.0%) (P = 0.001).

Conclusions:

This study did not prove the impact of flood due to a typhoon on the incidence of cardiovascular/cerebrovascular events.

Type
Original Research
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabinet Office, Government of Japan. Published 2021. Accessed March 1, 2021. http://www.bousai.go.jp/updates/r1typhoon19/pdf/r1typhoon19_45.pdf Google Scholar
One Nagano: Working Together to Support One Another. Nagano City. Published 2021. Accessed March 1, 2021. https://www.city.nagano.nagano.jp/uploaded/attachment/346440.pdf Google Scholar
Kario, K, Matsuo, T. Increased incidence of cardiovascular attacks in the epicenter just after the Hanshin-Awaji earthquake. Thromb Haemost. 1995;74(4):1207.Google ScholarPubMed
Kario, K, Ohashi, T. Increased coronary heart disease mortality after the Hanshin-Awaji earthquake among the older community on Awaji Island. Tsuna Medical Association. J Am Geriatr Soc. 1997;45(5):610-613.CrossRefGoogle ScholarPubMed
Kario, K, Ohashi, T. After a major earthquake, stroke death occurs more frequently than coronary heart disease death in very old subjects. J Am Geriatr Soc. 1998;46(4):537-538.CrossRefGoogle Scholar
Suzuki, S, Sakamoto, S, Miki, T, Matsuo, T. Hanshin-Awaji earthquake and acute myocardial infarction. Lancet. 1995;345(8955):981.CrossRefGoogle ScholarPubMed
Suzuki, S, Sakamoto, S, Koide, M, et al. Hanshin-Awaji earthquake as a trigger for acute myocardial infarction. Am Heart J. 1997;134(5 Pt 1):974-977.CrossRefGoogle ScholarPubMed
Ogawa, K, Tsuji, I, Shiono, K, et al. Increased acute myocardial infarction mortality following the 1995 Great Hanshin-Awaji earthquake in Japan. Int J Epidemiol. 2000;29(3):449-455.CrossRefGoogle ScholarPubMed
Watanabe, H, Kodama, M, Okura, Y, et al. Impact of earthquakes on takotsubo cardiomyopathy. JAMA. 2005;294(3):305-307.CrossRefGoogle ScholarPubMed
Watanabe, H, Kodama, M, Tanabe, N, et al. Impact of earthquakes on risk for pulmonary embolism. Int J Cardiol. 2008;129(1):152-154.CrossRefGoogle ScholarPubMed
Aoki, T, Fukumoto, Y, Yasuda, S, et al. The Great East Japan Earthquake disaster and cardiovascular diseases. Eur Heart J. 2012;33(22):2796-2803.CrossRefGoogle ScholarPubMed
Nihei, T, Takahashi, J, Kikuchi, Y, et al. Enhanced Rho-kinase activity in patients with vasospastic angina after the Great East Japan Earthquake. Circ J. 2012;76(12):2892-2894.CrossRefGoogle ScholarPubMed
Nakano, M, Kondo, M, Wakayama, Y, et al. Increased incidence of tachyarrhythmias and heart failure hospitalization in patients with implanted cardiac devices after the Great East Japan Earthquake disaster. Circ J. 2012;76(5):1283-1285.CrossRefGoogle ScholarPubMed
Aoki, T, Takahashi, J, Fukumoto, Y, et al. Effect of the Great East Japan Earthquake on cardiovascular diseases—report from the 10 hospitals in the disaster area. Circ J. 2013;77(2):490-493.CrossRefGoogle ScholarPubMed
Komorita, T, Fujisue, K, Sueta, D, et al. Clinical features of patients with acute aortic dissection after an earthquake: experience from the Kumamoto earthquake 2016. Am J Hypertens. 2020;33(3):261-268.CrossRefGoogle Scholar
JCS, JSH, and JCC Joint Working Group. Guidelines for disaster medicine for patients with cardiovascular diseases (JCS 2014/JSH 2014/JCC 2014)—digest version. Circ J. 2016;80(1):261-284.CrossRefGoogle Scholar
Sunohara, D, Miura, T, Komatsu, T, et al. Relationship between the flood disaster caused by the Reiwa First Year East Japan Typhoon and cardiovascular and cerebrovascular events in Nagano City: the SAVE trial. J Cardiol. 2021;78(5):447-455.CrossRefGoogle ScholarPubMed
Guideline on Diagnosis and Treatment of Acute Coronary Syndrome. JCS 2018. Published 2021. Accessed September 28, 2021. https://www.j-circ.or.jp/cms/wp-content/uploads/2020/02/JCS2018_kimura.pdf Google Scholar
Kario, K. Disaster hypertension—its characteristics, mechanism, and management. Circ J. 2012;76(3):553-562.CrossRefGoogle Scholar
Tsutsumi, A, Kayaba, K, Kario, K, Ishikawa, S. Prospective study on occupational stress and risk of stroke. Arch Intern Med. 2009;169(1):56-61.CrossRefGoogle ScholarPubMed
Kario, K. Measuring the effects of stress on the cardiovascular system during a disaster: the effective use of self-measured blood pressure monitoring. J Hypertens. 2010;28(4):657-659.CrossRefGoogle ScholarPubMed
Kario, K, Shimada, K, Takaku, F. Management of cardiovascular risk in disaster: Jichi Medical School (JMS) proposal 2004. JMAJ. 2005;48(7):363-376.Google Scholar
Xu, T, Zhan, Y, Lu, N, et al. Double product reflects the association of heart rate with MACEs in acute coronary syndrome patients treated with percutaneous coronary intervention. BMC Cardiovasc Disord. 2017;17(1):284-290.CrossRefGoogle ScholarPubMed
Sato, K, Sakamoto, K, Hashimoto, Y, et al. Risk factors and prevalence of deep vein thrombosis after the 2016 Kumamoto earthquakes. Circ J. 2019;83(6):1342-1348.CrossRefGoogle ScholarPubMed
Ueda, S, Hanzawa, K, Shibata, M, et al. High prevalence of deep vein thrombosis in tsunami-flooded shelters established after the Great East Japan Earthquake. Tohoku J Exp Med. 2012;227(3):199-202.CrossRefGoogle ScholarPubMed
Shibata, M, Chiba, H, Sasaki, K, et al. The utility of on-site ultrasound screening in population at high risk for deep venous thrombosis in temporary housing after the Great East Japan Earthquake. J Clin Ultrasound. 2017;45(9):566-574.CrossRefGoogle ScholarPubMed
Supplementary material: File

Komatsu et al. supplementary material

Komatsu et al. supplementary material

Download Komatsu et al. supplementary material(File)
File 15.3 KB