Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T16:59:58.969Z Has data issue: false hasContentIssue false

Use of VEGA data to analyse balloon options for possible subsequent long endurance Venus cloud layer missions

Published online by Cambridge University Press:  08 February 2024

G.E. Dorrington*
Affiliation:
School of Engineering, RMIT University, Bundoora, 3083, Australia

Abstract

The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist scheme is recommended.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seager, S., Petkowski, J. J., Carr, C. E., Grinspoon, D. H., Ehlmann, B. L., Saika, S. J., Agrawal, R., Buchanan, W. P., Weber, M. U., French, R., Klupar, P., Worden, S. P. and Baumgardener, D. Venus Life Finder missions motivation and summary, Aerospace 2022, 9, (7), p 385. https://doi.org/10.3390/aerospace9070385 CrossRefGoogle Scholar
Buchanan, W. P., de Jong, M., Agrawal, R., Petkowski, J. J., Arora, A., Saikia, S. J., Seager, S. and Longuski, J. Aerial platform design options for a life-finding mission at Venus, Aerospace 2022, 9, (7), p 363. https://doi.org/10.3390/aerospace9070363 CrossRefGoogle Scholar
Gilmore, M., Beauchamp, P. M., Lynch, R. and Amato, M. J. Venus flagship mission decadal study final report, 8 August 2020, https://science.nasa.gov/science-red/s3fs-public/atoms/files/Venus%20Flagship%20Mission.pdf (accessed 1 October 2020).Google Scholar
Cutts, J. (ed.) Aerial platforms for the scientific exploration of Venus, JPL D-102569, Jet Propulsion Laboratory, Pasadena California, October 2018.Google Scholar
Arredondo, A., Hodges, A., Abrahams, J. N. H., Bedford, C. C., Boatwright, B. D., Buz, J., Clayton Cantrall, C., Clark, J., Erwin, A., Krishnamoorthy, S., Magaña, L., McCabe, R. M., McIntosh, E. C., Noviello, J. L., Pellegrino, M., Ray, C., Styczinski, M. J., and Weigel, P. VALENTInE: A Concept for a New Frontiers–Class Long-duration in Situ Balloon based Aerobot Mission to Venus, Planetary Sci. J., 2022, 3, p 153. https://iopscience.iop.org/article/10.3847/PSJ/ac7324 CrossRefGoogle Scholar
Dorrington, G. E. Venus atmospheric platform options revisited, Adv. Space Res., 2010, 46, pp 310326.CrossRefGoogle Scholar
Sagdeev, R. Z., Linkin, V. M., Blamont, J. E. and Preston, R. A. The VEGA Venus balloon experiment, Science, 1986, 231, pp 14071408.CrossRefGoogle ScholarPubMed
Linkin, V. M., Kerzhanovich, V. V., Lipatov, A. N., Shurupov, A. A., Seiff, A., Ragent, B., Young, R. E., Ingersoll, A. P., Crisp, D., Elson, L.S., Preston, R. A. and Blamont, J. E. Thermal structure of the Venus atmosphere in the middle cloud region, Science, 1986, 231, pp 14201422.CrossRefGoogle Scholar
Zasova, L. V., Moroz, V. I., Linkin, V. M., Khatuntsev, I. V. and Maiorov, B. S. Structure of the Venusian atmosphere from surface up to 100 km, Cosmic Res., 2006, 44, (4), pp 364383.CrossRefGoogle Scholar
Ando, H., Imamura, T., Tellmann, S., Pätzo, M., Häusler, B., Sugimoto, N., Takagi, M., Sagawa, H., Limaye, S., Matsuda, Y., Choudhary, R. K. and Antonita, M. Thermal structure of the Venusian atmosphere from the sub-cloud region to the mesosphere as observed by radio occultation, Nat. Sci. Rep., 2020, 10, p 3448. https://doi.org/10.1038/s41598-020-59278-8 CrossRefGoogle Scholar
Sagdeev, R. Z., Linkin, V. M., Kerzhanovich, V. V., Lipatov, A. N., Shurupov, A. A., Blamont, J. E., Crisp, D., Ingersoll, A. P., Elson, L. S., Preston, R. A., Hildebrand, C. E., Ragent, B., Seiff, A., Young, R. E., Petit, G., Boloh, L., Alexandrov, Y.-N., Armand, N. A., Bakitko, R. V. and Selivanov, A. S. Overview of VEGA Venus balloon in situ meteorological measurements, Science, 1986, 231, pp 14111414.CrossRefGoogle ScholarPubMed
Lorenz, R. D., Crisp, D., Huber, L. Venus atmospheric structure and dynamics of the VEGA lander and balloons: new results and PDS archive, Icarus, 2018, 305, pp 277283.CrossRefGoogle Scholar
Kremnev, R. S., Linkin, V. M., Lipatov, A. N., Pichkadze, K. M., Shurupov, A. A., Terterashvili, A. V., Bakitko, R. V., Blamont, J. E., Malique, C., Ragent, B., Preston, R. A., ELSON, L.S. and CRISP, D. VEGA Balloon system and instrumentation, Science, 1986, 231, pp 14081411.CrossRefGoogle ScholarPubMed
Linkin, V. M., Kerzhanovich, V. A., Lipatov, N., Pichkadze, K. M., Shurupov, A. A., Terterashvili, A. V., Ingersoll, A. P., Crisp, D., Grossman, A. W., Young, R. E., Seiff, A., Ragent, B., Blamont, J. E., Elson, L. S. and Preston, R. A. VEGA balloon dynamics and vertical winds in the Venus middle cloud region, Science, 1986, 231, pp 14171419.CrossRefGoogle ScholarPubMed
Crisp, D., Ingersoll, A. P., Hildebrand, C. E. and Preston, R. A. VEGA balloon meteorological measurements, Adv. Space Res., 1990, 10, (5), pp 109125.CrossRefGoogle Scholar
Li, Q., Rapp, M., Stober, G. and Latteck, R. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar – part 1: frequency spectrum, Ann. Geophys., 2018, 36, pp 577586.CrossRefGoogle Scholar
Luce, L. and Hashiguchi, H. On the estimation of vertical air velocity and detection of atmospheric Turbulence from the ascent rate of balloon soundings, Atmos. Meas. Tech., 2020, 13, pp 19891999.CrossRefGoogle Scholar
Gallice, A., Weingold, F. G., Hoyle, C. R., Immler, F. and Peter, T. Modeling the ascent of sounding balloons: Derivation of the vertical air motion, Atmos. Meas. Tech., 2011, 4, pp 22352253.CrossRefGoogle Scholar
Nastrom, G. D. and Gage, K. S. A brief climatology of vertical wind variability in the troposphere and stratosphere as seen by the Poker Flat, Alaska, MST radar, J. Clim. App. Meteorol., 1984, 23, pp 453460.2.0.CO;2>CrossRefGoogle Scholar
Nastrom, G. D. The response of superpressure balloons to gravity waves, J App Meteorology, 1980, 19, pp 10131019.2.0.CO;2>CrossRefGoogle Scholar
Wakaba, S. and Balachandar, S. On the added mass force at finite Reynolds and acceleration numbers, Theor. Comput. Fluid Dyn., 2007, 21, pp 147153. https://doi.org/10.1007/s00162-007-0042-5 CrossRefGoogle Scholar
Scoggins, J. R. Spherical balloon wind sensor behavior, J. App. Meteorol., 1965, pp 139145.2.0.CO;2>CrossRefGoogle Scholar
Seddon, J. Basic Helicopter Aerodynamics. Blackwell Scientific, Oxford, 1990, pp 911.Google Scholar
Case, J. and Chilver, A. H. Strength of Materials and Structures. Edward Arnold, 1971, pp 107108.Google Scholar
Dorrington, G. E. Venus aerial platform options reconsidered, In 9 th Interplanetary Probe Workshop, IPPW-9, June 18–22, Toulouse, France, 2012.Google Scholar
Dorrington, G.E. Preliminary evidence for drizzle in the middle cloud layer of Venus, Adv. Space Res., 2013, 52, (3), pp 505511.CrossRefGoogle Scholar
Lorenz, R. D., Crisp, D., Huber, L. Vega 1 and Vega 1 balloon and lander archive, VEGA1/VEGA2-V-2/3-VENUS-1.0, NASA Planetary Data System, 2020, https://pds.nasa.gov/ds-view/pds/viewProfile.jsp?dsid=VEGA1/VEGA2-V-2/3-VENUS-V1.0 (accessed June 2021).Google Scholar
Dorrington, G. E. Venus cloud life in situ sampling platform options, In 43rd COSPAR Scientific Assembly, 28 January to 4 February 2021, Sydney, Australia.Google Scholar
Krause, F. C., Jones, J.-P., Jones, S. C., Pasalic, J., Billings, K. J., West, W. C., Smart, M. C., Bugga, R. V., Brandon, E. J. and Destephen, M. High specific energy lithium primary batteries as power sources for deep space exploration, J. Electrochemical Soc., 2018, 165, (10), pp A2312A2320.CrossRefGoogle Scholar
Knap, V., Kjeldgaard, L. K. and Stroe, D-I. A review of battery technology in cubeSats and small satellite solutions, Energies, 2020, 13, (16), 4097, pp 127.CrossRefGoogle Scholar
Hall, J. L., Yavrouian, A. H., Kerzhanovich, V. V., Fredrickson, C. S., Pauken, T., Kulczycki, E. A., Walsh, G. J., Said, M. and Day, S. Technology development for a long duration, mid-cloud level Venus balloon, Adv. Space Res., 2011, 48, (7), pp 12381247.CrossRefGoogle Scholar
Wetzel, M., Borys, R., Lowenthal, D. and Brown, S. Meteorological support to the Earthwinds transglobal balloon project, Bull. Am Meteorolog. Soc., 1995, 76, (4), pp 477487.2.0.CO;2>CrossRefGoogle Scholar
Hall, J.L., Israelevitz, J., Cameron, J., Harsh, P., Lachenmeier, T., Elder, T. and Pauken, M. Venus variable altitude aerobot prototype development, In 43rd COSPAR Scientific Assembly, 28 January to 4 February 2021, Sydney, Australia.Google Scholar
Dorrington, G. E. Drag of spheroid-cone shaped airship, J. Aircr., 2006, 43, (2), pp 363372.CrossRefGoogle Scholar
French, R., Mandy, C., Hunter, R., Mosleh, E., Sinclair, D., Beck, P., Seager, S., Petkowski, J. J., Carr, C. E., Grinspoon, D. H. and Baumgardner, D. Rocket Lab mission to Venus, Aerospace, 2022, 9, (8), p 445. https://doi.org/10.3390/aerospace9080445 CrossRefGoogle Scholar
Wilson, C.F., Chassefière, E., Hinglais, E., Baines, K. H., Balint, T.S, Berthelier, J-J., Blamont, J., Durry, G., Ferencz, C.S., Grimm, R.E., Inamura, T., Josset, J-L, Leblanc, F., Lebonnois, S., Leitner, J. J., Limaye, S.S., Marty, B., Palomba, E., Pogrebenko, S. V. and Rafkin, S. C. R. The European Venus Explorer (EVE) mission proposal, Exp. Astron., 2012, 33, (2–3), pp 305335.CrossRefGoogle Scholar
Hein, A.M., Lingam, M., Eubanks, T. M., Hibberd, A., Fries, D. and Blase, P. A precursor balloon mission for venusian astrobiology, Astrophys. J. Lett., 2020, 903, (2), L36.CrossRefGoogle Scholar
Khatuntsev, I. V., Patsaeva, M. V., Titov, D. M., Zasova, L. V., Ignatiev, N. I. and Gorinov, D. A. Twelve-year cycle in the cloud top winds derived from VMC/Venus express and UVI/Akatsuki imaging, Atmosphere, 2022, 13, (12). https://doi.org/10.3390/atmos13122023 CrossRefGoogle Scholar