Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-11T19:53:08.767Z Has data issue: false hasContentIssue false

A novel generative method for star clusters from hydro-dynamical simulations

Published online by Cambridge University Press:  20 January 2023

Stefano Torniamenti*
Affiliation:
Physics and Astronomy Department Galileo Galilei, University of Padova, Vicolo dell’Osservatorio 3, I–35122, Padova, Italy INFN- Sezione di Padova, Via Marzolo 8, I–35131 Padova, Italy INAF, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most stars form in clumpy and sub-structured clusters. These properties also emerge in hydro-dynamical simulations of star-forming clouds, which provide a way to generate realistic initial conditions for N-body runs of young stellar clusters. However, producing large sets of initial conditions by hydro-dynamical simulations is prohibitively expensive in terms of computational time. We introduce a novel technique for generating new initial conditions from a given sample of hydro-dynamical simulations, at a tiny computational cost. In particular, we apply a hierarchical clustering algorithm to learn a tree representation of the spatial and kinematic relations between stars, where the leaves represent the single stars and the nodes describe the structure of the cluster at larger and larger scales. This procedure can be used as a basis for the random generation of new sets of stars, by simply modifying the global structure of the stellar cluster, while leaving the small-scale properties unaltered.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Ballone, A., Mapelli, M., Di Carlo, U. N., Torniamenti, S., Spera, M., Rastello, S., 2020, MNRAS, 496, 49 CrossRefGoogle Scholar
Ballone, A., Torniamenti, S., Mapelli, M., Di Carlo, U. N., Spera, M., Rastello, S., Gaspari, N., Iorio, G., 2021, MNRAS, 501, 2920 CrossRefGoogle Scholar
Bate, M. R., Bonnell, I. A., Price, N. M., 1995, MNRAS, 277, 362B CrossRefGoogle Scholar
Bate, M. R., 2009, MNRAS, 392, 1363 CrossRefGoogle Scholar
Cantat-Gaudin, T., et al., 2019, A&A, 626, A17 Google Scholar
Cartwright, A., 2009, MNRAS, 400, 1427 CrossRefGoogle Scholar
Hénault-Brunet, V., et al., 2012, A&A, 545, L1 Google Scholar
Hills, J. G., 1980, ApJ, 235, 986 CrossRefGoogle Scholar
Kaufman, L., Rousseeuw, P. J., 1990, Finding groups in data. an introductionto cluster analysis, Wiley Series in Probability and Statistics.CrossRefGoogle Scholar
King, I. R., 1966, AJ, 71, 64 CrossRefGoogle Scholar
Klessen, R. S., Burkert, A., 2000, ApJS, 128, 287 CrossRefGoogle Scholar
Kuhn, M. A., Hillenbrand, L. A., Sills, A., Feigelson, E. D., Getman, K. V., 2019, ApJ, 870, 32 CrossRefGoogle Scholar
Lada, C. J., Lada, E. A., 2003, ARAA 41, 57 CrossRefGoogle Scholar
Larson, R. B., 1995, 272, 213 CrossRefGoogle Scholar
Pedregosa, F., et al., 2011, Journal of Machine Learning Research, 12, 2825 Google Scholar
Plummer, H. C., 1911, MNRAS, 71, 460 CrossRefGoogle Scholar
Torniamenti, S., Pasquato, M., Di Cintio, P., Ballone, A., Iorio, G., Mapelli, M., 2022, MNRAS, 510, 2097 CrossRefGoogle Scholar
Wall, J. E., McMillan, S. L. W., Mac Low, M.-M., Klessen, R. S., PortegiesZwart, S., 2019, ApJ, 887, 62 CrossRefGoogle Scholar