Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T05:54:18.370Z Has data issue: false hasContentIssue false

The properties of nuclear star clusters and their host galaxies

Published online by Cambridge University Press:  11 March 2020

Anil C. Seth
Affiliation:
University of Utah, Salt Lake City email: aseth@astro.utah.edu
Nadine Neumayer
Affiliation:
Max Planck Institute for Astronomy, Heidelberg
Torsten Böker
Affiliation:
European Space Agency, Space Telescope Science Center, Baltimore
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nuclear star clusters are found at the centers of most galaxies. They are the densest stellar systems in the Universe, and thus have unique and interesting stellar dynamics. We review how common nuclear star clusters are in galaxies of different masses and types, and then discuss the typical properties of NSCs. We close by discussing the formation of NSCs, and how a picture is emerging of different formation mechanisms being dominant in lower and higher mass galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ahn, C. P.et al. 2017, ApJ, 839, 72CrossRefGoogle Scholar
Antonini, F. 2013, ApJ, 763, 62CrossRefGoogle Scholar
Balcells, M., Graham, A. W., Domnguez-Palmero, L., & Peletier, R. F. 2003, ApJ, 582, L79CrossRefGoogle Scholar
Becklin, E. E. & Neugebauer, G. 1968, ApJ, 151, 145CrossRefGoogle Scholar
Bekki, K., Couch, W. J., & Drinkwater, M. J. 2001, ApJ, 552, L105CrossRefGoogle Scholar
Binggeli, B., Sandage, A., & Tammann, G. A. 1985, AJ, 90, 1681CrossRefGoogle Scholar
Böker, T.et al. 2002, AJ, 123, 1389CrossRefGoogle Scholar
Brown, G., Gnedin, O. Y., & Li, H. 2018, ApJ, 864, 94CrossRefGoogle Scholar
Carollo, C. M., Stiavelli, M., de Zeeuw, P. T., & Mack, J. 1997, AJ, 114, 2366CrossRefGoogle Scholar
Carretta, E.et al. 2010, A&A, 520, A95Google Scholar
Carson, D. J.et al. 2015, AJ, 149, 170CrossRefGoogle Scholar
Côté, P.et al. 2006, ApJS, 165, 57CrossRefGoogle Scholar
Da Costa, G. S. 2016, in IAU Symposium, Vol. 317, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, ed. Bragaglia, A., Arnaboldi, M., Rejkuba, M., & Romano, D., 110115Google Scholar
den Brok, M.et al. 2014, MNRAS, 445, 2385CrossRefGoogle Scholar
Drinkwater, M. J.et al. 2003, Nature, 423, 519CrossRefGoogle Scholar
Eigenthaler, P.et al. 2018, ApJ, 855, 142CrossRefGoogle Scholar
Erwin, P. & Gadotti, D. A. 2012, Advances in Astronomy, 2012, 946368CrossRefGoogle Scholar
Feldmeier, A.et al. 2014, A&A, 570, A2Google Scholar
Feldmeier-Krause, A.et al. 2015, A&A, 584, A2Google Scholar
Ferrarese, L.et al. 2006a, ApJ, 644, L21CrossRefGoogle Scholar
Ferrarese, L.. 2006b, ApJS, 164, 334CrossRefGoogle Scholar
Gallazzi, A.et al. 2005, MNRAS, 362, 41CrossRefGoogle Scholar
Gebhardt, K.et al. 2001, AJ, 122, 2469CrossRefGoogle Scholar
Georgiev, I. Y. & Böker, T. 2014, MNRAS, 441, 3570CrossRefGoogle Scholar
Georgiev, I. Y.et al. 2016, MNRAS, 457, 2122CrossRefGoogle Scholar
Georgiev, I. Y.. 2009, MNRAS, 396, 1075CrossRefGoogle Scholar
Gnedin, O. Y., Ostriker, J. P., & Tremaine, S. 2014, ApJ, 785, 71CrossRefGoogle Scholar
Graham, A. W. & Spitler, L. R. 2009, MNRAS, 397, 2148CrossRefGoogle Scholar
Hopkins, P. F. & Quataert, E. 2010, MNRAS, 405, L41CrossRefGoogle Scholar
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194CrossRefGoogle Scholar
Kacharov, N.et al. 2018, MNRAS, 480, 1973CrossRefGoogle Scholar
Kirby, E. N.et al. 2013, ApJ, 779, 102CrossRefGoogle Scholar
Koleva, M.et al. 2009, MNRAS, 396, 2133CrossRefGoogle Scholar
Kruijssen, J. M. D.et al. 2019, MNRAS, 486, 3180CrossRefGoogle Scholar
Lauer, T. R.et al. 1998, AJ, 116, 2263CrossRefGoogle Scholar
Light, E. S., Danielson, R. E., & Schwarzschild, M. 1974, ApJ, 194, 257CrossRefGoogle Scholar
Lotz, J. M.et al. 2001, ApJ, 552, 572CrossRefGoogle Scholar
Marino, A. F.et al. 2018, ApJ, 859, 81CrossRefGoogle Scholar
McLaughlin, D. E., King, A. R., & Nayakshin, S. 2006, ApJ, 650, L37CrossRefGoogle Scholar
Mieske, S.et al. 2013, A&A, 558, A14Google Scholar
Milosavljevi, M. & Merritt, D. 2001, ApJ, 563, 34CrossRefGoogle Scholar
Neumayer, N. & Walcher, C. J. 2012, Advances in Astronomy, 2012, 709038https://ui.adsabs.harvard.edu/abs/2020arXiv200103626N/abstractGoogle Scholar
Nguyen, D. D.et al. 2018, ApJ, 858, 118CrossRefGoogle Scholar
Ordenes-Briceño, Y.et al. 2018, ApJ, 860, 4CrossRefGoogle Scholar
Paudel, S., Lisker, T., & Kuntschner, H. 2011, MNRAS, 413, 1764CrossRefGoogle Scholar
Pfeffer, J. & Baumgardt, H. 2013, MNRAS, 433, 1997CrossRefGoogle Scholar
Pfeffer, J., Griffen, B. F., Baumgardt, H., & Hilker, M. 2014, MNRAS, 444, 3670CrossRefGoogle Scholar
Reines, A. E. & Volonteri, M. 2015, ApJ, 813, 82CrossRefGoogle Scholar
Rossa, J.et al. 2006, AJ, 132, 1074CrossRefGoogle Scholar
Sánchez-Janssen, R.et al. 2019, ApJ, 878, 18CrossRefGoogle Scholar
Scott, N. & Graham, A. W. 2013, ApJ, 763, 76CrossRefGoogle Scholar
Seth, A., Agüeros, M., Lee, D., & Basu-Zych, A. 2008a, ApJ, 678, 116CrossRefGoogle Scholar
Seth, A. C.et al. 2008b, ApJ, 687, 997CrossRefGoogle Scholar
Seth, A. C., Dalcanton, J. J., Hodge, P. W., & Debattista, V. P. 2006, AJ, 132, 2539CrossRefGoogle Scholar
Seth, A. C.et al. 2014, Nature, 513, 398CrossRefGoogle Scholar
Siegel, M. H.et al. 2007, ApJ, 667, L57CrossRefGoogle Scholar
Spengler, C.et al. 2017, ApJ, 849, 55CrossRefGoogle Scholar
Tremaine, S. D., Ostriker, J. P., & Spitzer, L. 1975, ApJ, 196, 407CrossRefGoogle Scholar
Voggel, K. T.et al. 2019, ApJ, 871, 159CrossRefGoogle Scholar
Walcher, C. J.et al. 2006, ApJ, 649, 692CrossRefGoogle Scholar