Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:52:39.669Z Has data issue: false hasContentIssue false

Impact of pulmonary hypertension and congenital heart disease with hemodynamic repercussion on the severity of acute respiratory infections in children under 5 years of age at a pediatric referral center in Colombia, South America

Published online by Cambridge University Press:  30 September 2020

Diego A. Lozano-Espinosa*
Affiliation:
Department of Pediatrics, HOMI-Fundación Hospital Pediátrico de la Misericordia, Bogotá, Colombia
Victor M. Huertas-Quiñones
Affiliation:
Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia Division of Pediatric Cardiology, Fundación Cardioinfantil, Cardiology Institute, Bogotá, Colombia
Carlos E. Rodríguez-Martínez
Affiliation:
Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogotá, Colombia
*
Author for correspondence: D. A. Lozano-Espinosa, MD, Department of Pediatrics, HOMI-Fundación Hospital Pediátrico de la Misericordia, Av. Caracas #1-65, Bogotá, Colombia. Tel: +3006856405; Fax: +1 3811970. E-mail: dialoes26@gmail.com

Abstract

Background:

Acute respiratory infection is one of the main causes of morbidity in children. Some studies have suggested that pulmonary hypertension and congenital heart disease with haemodynamic repercussion increase the severity of respiratory infections, but there are few publications in developing countries.

Methods:

This was a prospective cohort study evaluating the impact of pulmonary hypertension and congenital heart disease (CHD) with haemodynamic repercussion as predictors of severity in children under 5 years of age hospitalised for acute respiratory infection.

Results:

Altogether, 217 children hospitalised for a respiratory infection who underwent an echocardiogram were evaluated; 62 children were diagnosed with CHD with haemodynamic repercussion or pulmonary hypertension. Independent predictors of admission to intensive care included: pulmonary hypertension (RR 2.14; 95% CI 1.06–4.35, p = 0.034), respiratory syncytial virus (RR 2.52; 95% CI 1.29–4.92, p = 0.006), and bacterial pneumonia (RR 3.09; 95% CI 1.65–5.81, p = 0.000). A significant difference was found in average length of hospital stay in children with the cardiovascular conditions studied (p = 0.000).

Conclusions:

Pulmonary hypertension and CHD with haemodynamic repercussion as well as respiratory syncytial virus and bacterial pneumonia were predictors of severity in children with respiratory infections in this study. Early recognition of cardiovascular risks in paediatric populations is necessary to lessen the impact on respiratory infections.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shi, T, McAllister, DA, O’Brien, KL, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. The Lancet. 2017; 390: 946958. https://doi.org/10.1016/S0140-6736(17)30938-8 CrossRefGoogle ScholarPubMed
Sonego, M, Pellegrin, MC, Becker, G, Lazzerini, M. Risk factors for mortality from Acute Lower Respiratory Infections (ALRI) in children under five years of age in low and middle- income countries: a systematic review and meta-analysis of observational studies. PLoS One 2015; 117. https://doi.org/10.1371/journal.pone.0116380 Google ScholarPubMed
Healy, F, Hanna, BD, Zinman, R. Pulmonary complications of congenital heart disease. Paediatric Respiratory Reviews 2012; 13: 1015. https://doi.org/10.1016/j.prrv.2011.01.007 CrossRefGoogle ScholarPubMed
Jung, JW. Respiratory syncytial virus infection in children with congenital heart disease: global data and interim results of Korean RSV-CHD survey. Korean J Pediatr 2011; 54: 192196. https://doi.org/10.3345/kjp.2011.54.5.192 CrossRefGoogle ScholarPubMed
van der Linde, D, Konings, EEM, Slager, MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58: 22412247. https://doi.org/10.1016/j.jacc.2011.08.025 CrossRefGoogle ScholarPubMed
Zarante, I, Franco, L, López, C, Fernández, N. Frecuencia de malformaciones congénitas: evaluación y pronóstico de 52.744 nacimientos en tres ciudades colombianas. Biomédica 2010; 30: 6571. http://www.scielo.org.co/pdf/bio/v30n1/v30n1a09.pdf CrossRefGoogle Scholar
Tassinari, S, Martínez-vernaza, S, Erazo-morera, N, Pinzón-arciniegas, MC, Gracia, G, Zarante, I. Epidemiología de las cardiopatías congénitas en Bogotá, Colombia, entre 2001 y 2014 : ¿ mejoría en la vigilancia o aumento en la prevalencia ? 2018; https://doi.org/10.7705/biomedica.v38i0.3381 CrossRefGoogle Scholar
Medrano López, C, García-Guereta Silva, L. Infecciones respiratorias y cardiopatías congénitas: dos estaciones del estudio CIVIC. An Pediatr 2007; 67: 329336. https://doi.org/10.1016/s1695-4033(07)70650-1 CrossRefGoogle Scholar
Medrano López, C, García-Guereta, L. Community-acquired respiratory infections in young children with congenital heart diseases in the palivizumab era: the Spanish 4-season civic epidemiologic study. Pediatr Infect Dis J 2010; 29: 10771082. https://doi.org/10.1097/INF.0b013e3181efdac5 CrossRefGoogle ScholarPubMed
Kimura, D, McNamara, IF, Wang, J, Fowke, JH, West, AN, Philip, R. Pulmonary hypertension during respiratory syncytial virus bronchiolitis: a risk factor for severity of illness. Cardiol Young 2019; 29: 615619. https://doi.org/10.1017/S1047951119000313 CrossRefGoogle ScholarPubMed
Bardi-Peti, L, Ciofu, EP. Pulmonary hypertension during acute respiratory diseases in infants. Maedica 2010; 5: 1319. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150087/pdf/maed-05-13.pdf Google ScholarPubMed
Legg, JP, Hussain, IR, Warner, JA, Johnston, SL, Warner, JO. Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 2003; 168: 633639. https://doi.org/10.1164/rccm.200210-1148OC CrossRefGoogle ScholarPubMed
Donahue, DM, Lee, ME, Suen, HC, Quertermous, T, Wain, JC. Pulmonary hypoxia increases endothelin-1 gene expression in sheep. J Surg Res 1994; 57: 280283. https://doi.org/10.1006/jsre.1994.1145 CrossRefGoogle Scholar
Samransamruajkit, R, Moonviriyakit, K, Vanapongtipagorn, P, Prapphal, N, Deerojanawong, J, Poovorawan, Y. Plasma endothelin-1 in infants and young children with acute bronchiolitis and viral pneumonia. Asian Pac J Allergy Immunol 2002; 20: 229234.Google ScholarPubMed
Rodríguez, DA, Rodríguez-Martínez, CE, Cárdenas, AC, et al. Predictors of severity and mortality in children hospitalized with respiratory syncytial virus infection in a tropical region. Pediatr Pulmonol 2014; 49: 269276. https://doi.org/10.1002/ppul.22781 CrossRefGoogle Scholar
Pedraza, A, Carlos, R, Ranniery, A. Predictors of severe disease in a hospitalized population of children with acute viral lower respiratory tract infections. J Med Virol 2016; 759: 754759. https://doi.org/10.1002/jmv.24394 CrossRefGoogle Scholar
Chang, RK, Chen, AY. Impact of palivizumab on RSV hospitalizations for children with hemodynamically significant congenital heart disease. Pediatr Cardiol 2010; 31: 9095. https://doi.org/10.1007/s00246-009-9577-0 CrossRefGoogle ScholarPubMed
Feltes, TF, Cabalka, AK, Meissner, HC, et al. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J Pediatr 2003; 143: 532540. https://doi.org/10.1067/s0022-3476(03)00454-2 CrossRefGoogle ScholarPubMed
Mirza, H, Ziegler, J, Ford, S, Padbury, J, Tucker, R, Laptook, A. Pulmonary hypertension in preterm infants: prevalence and association with bronchopulmonary dysplasia [published correction appears in J Pediatr. 2015 Mar;166(3):782]. J Pediatr 2014; 165: 909914.e1. https://doi.org/10.1016/j.jpeds.2014.07.040 CrossRefGoogle ScholarPubMed
Mourani, PM, Sontag, MK, Younoszai, A, Ivy, DD, Abman, SH. Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 2008; 121: 317325. https://doi.org/10.1542/peds.2007-1583 CrossRefGoogle ScholarPubMed
Galiè, N, McLaughlin, VV, Rubin, LJ, Simonneau, G. An overview of the 6th World Symposium on Pulmonary Hypertension. Eur Respir J 2019; 53: 1802148. Published 2019 Jan 24. https://doi.org/10.1183/13993003.02148-2018 CrossRefGoogle ScholarPubMed
Dimopoulos, K, Condliffe, R, Tulloh, RMR, et al. Echocardiographic screening for pulmonary hypertension in congenital heart disease: JACC review topic of the week. J Am Coll Cardiol 2018; 72: 27782788. https://doi.org/10.1016/j.jacc.2018.08.2201 CrossRefGoogle Scholar
Torres, AJ. Hemodynamic assessment of atrial septal defects. J Thorac Dis 2018; 10 (Suppl 24): S2882S2889. https://doi.org/10.21037/jtd.2018.02.17 CrossRefGoogle ScholarPubMed
El-Khuffash, A, Levy, PT, Gorenflo, M, Frantz, ID 3rd. The definition of a hemodynamically significant ductus arteriosus. Pediatr Res 2019; 85: 740741. https://doi.org/10.1038/s41390-019-0342-7 CrossRefGoogle ScholarPubMed
El Basha, N, Marzouk, H, Sherif, M, El Kholy, A. Prematurity is a significant predictor of worse outcomes in viral bronchiolitis: a comparative study in infancy. J Egypt Public Health Assoc 2017; 92: 188194. Published 2017 Sep 1.CrossRefGoogle ScholarPubMed