Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T02:21:47.043Z Has data issue: false hasContentIssue false

Mapping of morainic complexes and reconstruction of glacier dynamics north-east of Cook Ice Cap, Kerguelen Archipelago (49°S)

Published online by Cambridge University Press:  26 February 2024

Philip Deline*
Affiliation:
EDYTEM, Université Savoie Mont Blanc, CNRS, 73000 Chambéry, France
Henriette Linge
Affiliation:
Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, 5012 Bergen, Norway
Ludovic Ravanel
Affiliation:
EDYTEM, Université Savoie Mont Blanc, CNRS, 73000 Chambéry, France
Talin Tuestad
Affiliation:
Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, 5012 Bergen, Norway
Romain Lafite
Affiliation:
EDYTEM, Université Savoie Mont Blanc, CNRS, 73000 Chambéry, France
Fabien Arnaud
Affiliation:
EDYTEM, Université Savoie Mont Blanc, CNRS, 73000 Chambéry, France
Jostein Bakke
Affiliation:
Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, 5012 Bergen, Norway

Abstract

Due to the limited landmasses in the Southern Hemisphere, we must rely on data from sub-Antarctic islands within the Southern Ocean to record historical climate patterns. Over the past few decades, glaciers throughout the Southern Ocean region have experienced a noticeable retreat, especially in the Kerguelen Archipelago, whose glacial landforms offer valuable insights into long-term climate fluctuations. Our comprehensive glacial geomorphological study conducted in its remote north-western region meticulously examines morainic complexes from smaller cirque glaciers and larger outlet glaciers stemming from the Cook Ice Cap. We mapped these landforms to reconstruct historical glacier extents during the Holocene. The surface area of the three main glaciers had decreased in 1962–1964 by only 35% compared to their maximum extents, whereas surface area changes across 12 time intervals spanning from 1962 to 2019 from aerial and satellite imagery reveal a cumulative reduction of 43.5%. Additionally, we modelled changes in glacier thickness and equilibrium-line altitude for the key glaciers at three distinct stages: 1) their maximum extent before 1962, 2) the early 1960s and 3) 2019. This multifaceted analysis contributes valuable insights into the dynamics of Kerguelen's glaciers and the broader implications for understanding past and ongoing climate dynamics in the Southern Hemisphere.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert de la Rüe, E. 1932. Etude géologique et géographique de l'archipel de Kerguelen. Revue de la géographie physique et de géologie dynamique, 5, 231 pp.Google Scholar
Aubert de la Rüe, E. 1967. Remarques sur la disparition des glaciers de la Péninsule Courbet (Archipel de Kerguelen). TAAF, La Documentation Française, Paris, 40, 319.Google Scholar
Bakke, J., Paasche, Ø., Schaefer, J., Paasche, Ø. 2021. Long-term demise of sub-Antarctic glaciers modulated by the Southern Hemisphere westerlies. Scientific Reports, 11, 10.1038/s41598-021-87317-5.CrossRefGoogle ScholarPubMed
Balco, G. 2020. Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating. Annual Reviews of Earth and Planetary Sciences, 48, 10.1146/annurev-earth-081619-052609.CrossRefGoogle Scholar
Basnett, S., Kulkarni, A.V. & Bolch, T. 2013. The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology, 59, 10.3189/2013JoG12J184.CrossRefGoogle Scholar
Bauer, A. 1963. Les glaciers de l'île de Kerguelen. Comité National Français des Recherches Antarctiques, 2, 180.Google Scholar
Benn, D.I. & Gemmell, A.M.D. 1997. Calculating equilibrium-line altitudes of former glaciers by the balance ratio method: a new computer spreadsheet. Glacial Geology and Geomorphology, 1997, 7.Google Scholar
Benn, D.I. & Lehmkuhl, F. 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65–66, 10.1016/S1040-6182(99)00034-8.CrossRefGoogle Scholar
Benn, D.I., Warren, C.R. & Mottram, R.H. 2007. Calving processes and the dynamics of calving glaciers. Earth-Science Reviews, 82, 10.1016/j.earscirev.2007.02.002.CrossRefGoogle Scholar
Berthier, E., Le Bris, R., Mabileau, L., Testut, L. & Rémy, F. 2009. Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006. Journal of Geophysical Research, 114, 10.1029/2008JF001192.CrossRefGoogle Scholar
Boulton, G. 1978. Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology, 25, 10.1111/j.1365-3091.1978.tb00329.x.CrossRefGoogle Scholar
Bryan, S.E. & Ernst, R.E. 2007. proposed revision to large igneous province classification. Earth-Science Reviews, 86, 10.1016/j.earscirev.2007.08.008.Google Scholar
Carrivick, J.L., Boston, C.M., Sutherland, J.L., Pearce, D., Armstrong, H., Bjork, A., et al. 2023. Mass loss of glaciers and ice caps across Greenland since the Little Ice Age. Geophysical Research Letters, 50, 10.1029/2023GL103950.CrossRefGoogle Scholar
Carrivick, J.L., Sutherland, J.L., Huss, M., Purdie, H., Stringer, C.D., Grimes, M., et al. 2022. Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: past, present, and future. Global and Planetary Change, 211, 10.1016/j.gloplacha.2018.05.006.CrossRefGoogle Scholar
Chandler, B.M.P., Lovell, H., Boston, C.M., Lukas, S., Barr, I.D., Benediktsson, Í.Ö., et al. 2018. Glacial geomorphological mapping: a review of approaches and frameworks for best practice. Earth-Science Reviews, 185, 10.1016/j.earscirev.2018.07.015.CrossRefGoogle Scholar
Charton, J., Jomelli, V., Schimmelpfennig, I., Verfaillie, D., Favier, V., Mokadem, F., et al. 2020. A debris-covered glacier at Kerguelen (49°S, 69°E) over the past 15 000 years. Antarctic Science, 33, 10.1017/S0954102020000541.Google Scholar
Charton, J., Schimmelpfennig, I., Jomelli, V., Delpech, G., Blard, P.-H., Braucher, R., et al. 2022. New cosmogenic nuclide constraints on Late Glacial and Holocene glacier fluctuations in the sub-Antarctic Indian Ocean (Kerguelen Islands, 49°S). Quaternary Science Reviews, 283, 10.1016/j.quascirev.2022.107461.CrossRefGoogle Scholar
Civel-Mazens, M., Crosta, X., Cortese, G., Michel, E., Mazaud, A., Ther, O., et al. 2021. Antarctic Polar Front migrations in the Kerguelen Plateau region, Southern Ocean, over the past 360 kyrs. Global and Planetary Change, 202, 10.1016/j.gloplacha.2021.103526.CrossRefGoogle Scholar
Cogley, J.G., Berthier, E. & Donoghue, S. 2014. Remote sensing of glaciers of the Subantarctic islands. In Kargel, J.S., Bishop, M.P., Kääb, A., Raup, B. & Leonard, G., eds, Global land ice measurements from space: satellite multispectral imaging of glaciers. Berlin: Springer, 759780.CrossRefGoogle Scholar
Cuffey, K.M. & Paterson, W.S.B. 2010. The physics of glaciers. Cambridge, MA: Academic Press, 704 pp.Google Scholar
Durand de Corbiac, H. 1970. La carte de reconnaissance des îles Kerguelen. Comité National Français des Recherches Antarctiques, 26, 173.Google Scholar
Dyurgerov, M., Meier, M.F. & Bahr, D.B. 2009. A new index of glacier area change: a tool for glacier monitoring. Journal of Glaciology, 55, 10.3189/002214309789471030.CrossRefGoogle Scholar
Favier, V., Verfaillie, D., Berthier, E., Menegoz, M., Jomelli, V., Kay, J., et al. 2016. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean. Scientific Reports, 6, 10.1038/srep32396.CrossRefGoogle ScholarPubMed
Frenot, Y., Gloaguen, J.C., Cannavacciuolo, M. & Bellido, A. 1998. Primary succession on glacier forelands in the sub-Antarctic Kerguelen Islands. Journal of Vegetation Science, 9, 10.2307/3237225.CrossRefGoogle Scholar
Frenot, Y., Gloaguen, J.C., van de Vijver, B. & Beyens, L. 1997. Datation de quelques sédiments tourbeux holocènes et oscillations glaciaires aux îles Kerguelen. Comptes Rendus de l'Académie des Sciences, 320, 10.1016/S0764-4469(97)84712-9.Google Scholar
Frenot, Y., Gloaguen, J.C., Picot, G., Bougère, J. & Benjamin, D. 1993. Azorella selago Hook. used to estimate glacier fluctuations and climatic history in the Kerguelen Islands over the last two centuries. Oecologia, 95, 140144.CrossRefGoogle ScholarPubMed
Gautier, I., Weis, D., Mennessier, J.-P., Vidal, P., Giret, A. & Loubet, M. 1990. Petrology and geochemistry of the Kerguelen Archipelago basalts (South Indian Ocean): evolution of the mantle sources from ridge to intraplate position. Earth and Planetary Science Letters, 100, 5976.CrossRefGoogle Scholar
Giardino, C., Oggioni, A., Bresciani, M. & Yan, H. 2010. Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region. Mountain Research and Development, 30, 10.1659/MRD-JOURNAL-D-09-00042.1.CrossRefGoogle Scholar
Gruber, S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere, 6, 10.5194/tc-6-221-2012.CrossRefGoogle Scholar
Hall, K. 1984. Evidence in favour of an extensive ice cover on sub-Antarctic Kerguelen Island during the Last Glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 47, 225232.CrossRefGoogle Scholar
Hernández, A., Martin-Puertas, C., Moffa-Sánchez, P., Moreno-Chamarro, E., Ortega, P., Blockley, S., et al. 2020. Modes of climate variability: synthesis and review of proxy-based reconstructions through the Holocene. Earth-Science Reviews, 209, 10.1016/j.earscirev.2020.103286.CrossRefGoogle Scholar
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., et al. 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature, 592, 10.1038/s41586-021-03436-z.CrossRefGoogle ScholarPubMed
Ignéczi, A. & Nagy, B. 2013. Determining steady-state accumulation-area ratios of outlet glaciers for application of outlets in climate reconstructions. Quaternary International, 293, 10.1016/j.quaint.2012.09.017.CrossRefGoogle Scholar
Jomelli, V., Mokadem, F., Schimmelpfennig, I., Chapron, E., Rinterknecht, V., Favier, V., et al. 2017. Sub-Antarctic glacier extensions in the Kerguelen region (49°S, Indian Ocean) over the past 24,000 years constrained by 36Cl moraine dating. Quaternary Science Reviews, 162, 10.1016/j.quascirev.2017.03.010.CrossRefGoogle Scholar
Jomelli, V., Schimmelpfennig, I., Favier, V., Mokadem, F., Landais, A., Rinterknecht, V., et al. 2018. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: evidence from 36Cl dating. Quaternary Science Reviews, 183, 10.1016/j.quascirev.2018.01.008.CrossRefGoogle Scholar
Keeler, D.G., Rupper, S. & Schaefer, J.M. 2021. A first-order flexible ELA model based on geomorphic constraints. MethodsX, 8, 10.1016/j.mex.2020.101173.CrossRefGoogle ScholarPubMed
King, O., Dehecq, A., Quincey, D. & Carrivick, J. 2018. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Global and Planetary Change, 167, 4660.CrossRefGoogle Scholar
Li, C., Sonke, J.E., Le Roux, G., Van der Putten, N., Piotrowska, N., Jeandel, C., et al. 2020. Holocene dynamics of the southern westerly winds over the Indian Ocean inferred from a peat dust deposition record. Quaternary Science Reviews, 231, 10.1016/j.quascirev.2020.106169.CrossRefGoogle Scholar
Linsbauer, A., Paul, F. & Haeberli, W. 2012. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. Journal of Geophysical Research - Earth Surface, 117, 10.1029/2011JF002313.CrossRefGoogle Scholar
Magnin, F., Haeberli, W., Linsbauer, A., Deline, P. & Ravanel, L. 2020. Estimating glacier-bed overdeepenings as possible sites of future lakes in the de-glaciating Mont Blanc massif (western European Alps). Geomorphology, 350, 10.1016/j.geomorph.2019.106913.CrossRefGoogle Scholar
Mathieu, L., Byrne, P., Guillaume, D., van Wyk de Vries, B. & Moine, B. 2011. The field and remote sensing analysis of the Kerguelen Archipelago structure, Indian Ocean. Journal of Volcanology and Geothermal Research, 199, 10.1016/j.jvolgeores.2010.11.013.CrossRefGoogle Scholar
Matta, E., Giardino, C., Boggero, A. & Bresciani, M. 2017. Use of satellite and in situ reflectance data for lake water color characterization in the Everest Himalayan Region. Mountain Research and Development, 37, 10.1659/MRDJOURNAL-D-15-00052.1.CrossRefGoogle Scholar
Millan, R., Mouginot, J., Rabatel, A. & Morlighem, M. 2022. Ice velocity and thickness of the world's glaciers. Nature Geosciences, 15, 10.1038/s41561-021-00885-z.CrossRefGoogle Scholar
Nougier, J. 1970. Contribution à l'étude géologique et géomorphologique des îles Kerguelen. Comité National Français des Recherches Antarctiques, 27, 440 pp. + 256 pp. + geologic map at 1:200 000.Google Scholar
Oppedal, L.T., Bakke, J., Paasche, Ø., Werner, J.P. & van der Bilt, W.G.M. 2018. Cirque Glacier on South Georgia shows centennial variability over the last 7000 years. Frontiers in Earth Science, 6, 2.CrossRefGoogle Scholar
Orsi, A.H., Whitworth III, T. & Nowlin, W.D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I: Oceanographic Research Papers, 42, 10.1016/0967-0637(95)00021-W.Google Scholar
Park, Y.-H., Vivier, F., Roquet, F. & Kestenare, E. 2009. Direct observations of the ACC transport across the Kerguelen Plateau. Geophysical Research Letters, 36, 10.1029/2009GL039617.CrossRefGoogle Scholar
Park, Y.-H., Park, T., Kim, T.-W., Lee, S.-H., Hong, C.-S., Lee, J.-H., et al. 2019. Observations of the Antarctic Circumpolar Current over the Udintsev Fracture Zone, the narrowest choke point in the Southern Ocean. Journal of Geophysical Research - Oceans, 124, 10.1029/2019JC015024.CrossRefGoogle Scholar
Paul, F. & Linsbauer, A. 2012. Modeling of glacier bed topography from glacier out-lines, central branch lines, and a DEM. International Journal of Geographical Information Science, 26, 10.1080/13658816.2011.627859.CrossRefGoogle Scholar
Peel, M.C., Finlayson, B.L. & McMahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification, Hydrology and Earth System Sciences, 11, 10.5194/hess-11-1633-2007.Google Scholar
Pellitero, R., Rea, B., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., et al. 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences, 82, 10.1016/j.cageo.2015.05.005.CrossRefGoogle Scholar
Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C.R., et al. 2016. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences, 94, 10.1016/j.cageo.2016.06.008.CrossRefGoogle Scholar
Pohl, B., Saucède, T., Favier, V., Pergaud, J., Verfaillie, D., Féral, J.-P., et al. 2021. Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes. Journal of Applied Meteorology and Climatology, 60, 10.1175/JAMC-D-20-0255.1.Google Scholar
Rabatel, A., Letréguilly, A., Dedieu, J.-P. & Eckert, N. 2013. Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls. The Cryosphere, 7, 10.5194/tc-7-1455-2013.CrossRefGoogle Scholar
Renac, C., Kyser, K., Bowden, P., Moine, B. & Cottin, J.-Y. 2010. Hydrothermal fluid interaction in basaltic lava units, Kerguelen Archipelago (SW Indian Ocean). European Journal of Mineralogy, 22, 10.1127/0935-1221/2009/0022-1993.CrossRefGoogle Scholar
Ruiz, L., Bodin, X. 2015. Analysis and improvement of surface representativeness of high resolution Pléiades DEMs: examples from glaciers and rock glaciers in two areas of the Andes. In Jasiewicz, J., Zwoliński, Z., Mitasova, H. & Hengl, T., eds, Proceedings of the Geomorphometry 2015 Conference. Poznan: Adam Mickiewicz University in Poznań - Institute of Geoecology and Geoinformation, International Society for Geomorphometry, 223226.Google Scholar
Schaefer, J.M., Codilean, A.T., Willenbring, J.K., Lu, Z.-T., Keisling, B., Fülöp, R.-H., et al. 2022. Cosmogenic nuclide techniques. Nature Reviews Methods Primers, 2, 10.1038/s43586-022-00096-9.CrossRefGoogle Scholar
Shugar, D.H., Burr, A., Haritashya, U.K., Kargel, J.S., Watso, C.S., Kennedy, M.C., et al. 2020. Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10, 10.1038/s41558-020-0855-4.CrossRefGoogle Scholar
Torsnes, I., Rye, N. & Nesje, A. 1993. Modern and Little Ice Age equilibrium-line altitudes on outlet valley glaciers from Jostedalsbreen, western Norway: an evaluation of different approaches to their calculation. Arctic and Alpine Research, 25, 10.1080/00040851.1993.12002990.CrossRefGoogle Scholar
Vallon, M. 1977a. Bilans de masse et fluctuations récentes du glacier Ampère (Iles Kerguelen, T.A.A.F.). Zeitschrift für Gletscherkunde und Glazialgeologie, 13, 5785.Google Scholar
Vallon, M. 1977b. Topographie sous-glaciaire du glacier Ampère (iles Kerguelen, TAAF). Zeitschrift für Gletscherkunde und Glazialgeologie, 13, 3755.Google Scholar
van der Bilt, W.G.M., Bakke, J., Werner, J.P., Paasche, Ø., Rosqvist, G. & Vatle, S.S. 2017. Late Holocene glacier reconstruction reveals retreat behind present limits and two-stage Little Ice Age on subantarctic South Georgia. Journal of Quaternary Sciences, 32, 10.1002/jqs.2937.CrossRefGoogle Scholar
Van der Putten, N., Stieperaere, H., Verbruggen, C. & Ochyra, R. 2004. Holocene palaeoecology and climate history of South Georgia (sub-Antarctica) based on a macrofossil record of bryophytes and seeds. The Holocene, 14, 10.1191/0959683604hl714rp.CrossRefGoogle Scholar
Van der Putten, N., Verbruggen, C., Björck, S., Michel, E., Disnar, J.-R., Chapron, E., et al. 2015. The Last Termination in the South Indian Ocean: a unique terrestrial record from Kerguelen Islands (49°S) situated within the Southern Hemisphere westerly belt. Quaternary Science Reviews, 122, 142157.CrossRefGoogle Scholar
Verfaillie, D. 2014. Suivi et modélisation du bilan de masse de la calotte Cook aux iles Kerguelen. Lien avec le changement climatique. PhD thesis, Université de Grenoble, 275 pp.Google Scholar
Verfaillie, D., Charton, J., Schimmelpfennig, I., Stroebele, Z., Jomelli, V., Bétard, F., et al., 2021. Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling. Antarctic Science, 33, 10.1017/S0954102021000080.CrossRefGoogle Scholar
Verfaillie, D., Favier, V., Dumont, M., Jomelli, V., Gilbert, A., Brunstein, D., et al. 2015. Recent glacier decline in the Kerguelen Islands (49°S, 69°E) derived from modeling, field observations, and satellite data. Journal of Geophysical Research - Earth Surface, 120, 10.1002/2014JF003329.CrossRefGoogle Scholar
Wang, X., Chai, K.G., Liu, S.Y., Wei, J., Jiang, Z. & Liu, Q. 2017. Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan Plateau. Journal of Glaciology, 63, 10.1017/jog.2017.14.CrossRefGoogle Scholar
Supplementary material: File

Deline et al. supplementary material

Deline et al. supplementary material
Download Deline et al. supplementary material(File)
File 10.7 MB